
API design for machine learning software:
experiences from the scikit-learn project

Lars Buitinck1, Gilles Louppe2, Mathieu Blondel3, Fabian Pedregosa4,
Andreas C. Müller5, Olivier Grisel6, Vlad Niculae7, Peter Prettenhofer8,

Alexandre Gramfort4,9, Jaques Grobler4, Robert Layton10, Jake Vanderplas11,
Arnaud Joly2, Brian Holt12, and Gaël Varoquaux4

1 ILPS, Informatics Institute, University of Amsterdam
2 University of Liège
3 Kobe University

4 Parietal, INRIA Saclay
5 University of Bonn

6 Independent consultant
7 University of Bucharest

8 Ciuvo GmbH
9 Institut Mines-Telecom, Telecom ParisTech, CNRS LTCI

10 University of Ballarat
11 University of Washington

12 Samsung Electronics Research Institute

Abstract. scikit-learn is an increasingly popular machine learning li-
brary. Written in Python, it is designed to be simple and efficient, acces-
sible to non-experts, and reusable in various contexts. In this paper, we
present and discuss our design choices for the application programming
interface (API) of the project. In particular, we describe the simple and
elegant interface shared by all learning and processing units in the library
and then discuss its advantages in terms of composition and reusabil-
ity. The paper also comments on implementation details specific to the
Python ecosystem and analyzes obstacles faced by users and developers
of the library.

1 Introduction

The scikit-learn project1 (Pedregosa et al., 2011) provides an open source ma-
chine learning library for the Python programming language. The ambition of the
project is to provide efficient and well-established machine learning tools within
a programming environment that is accessible to non-machine learning experts
and reusable in various scientific areas. The project is not a novel domain-specific
language, but a library that provides machine learning idioms to a general-
purpose high-level language. Among other things, it includes classical learning
algorithms, model evaluation and selection tools, as well as preprocessing proce-
dures. The library is distributed under the simplified BSD license, encouraging
its use in both academic and commercial settings.

1 http://scikit-learn.org



2

scikit-learn is a library, i.e. a collection of classes and functions that users
import into Python programs. Using scikit-learn therefore requires basic Python
programming knowledge. No command-line interface, let alone a graphical user
interface, is offered for non-programmer users. Instead, interactive use is made
possible by the Python interactive interpreter, and its enhanced replacement
IPython (Perez and Granger, 2007), which offer a matlab-like working environ-
ment specifically designed for scientific use.

The library has been designed to tie in with the set of numeric and scientific
packages centered around the NumPy and SciPy libraries. NumPy (Van der Walt
et al., 2011) augments Python with a contiguous numeric array datatype and
fast array computing primitives, while SciPy (Haenel et al., 2013) extends it
further with common numerical operations, either by implementing these in
Python/NumPy or by wrapping existing C/C++/Fortran implementations. Build-
ing upon this stack, a series of libraries called scikits were created, to comple-
ment SciPy with domain-specific toolkits. Currently, the two most popular and
feature-complete ones are by far scikit-learn and scikit-image,2 which does image
processing.

Started in 2007, scikit-learn is developed by an international team of over
a dozen core developers, mostly researchers from various fields (e.g., computer
science, neuroscience, astrophysics). The project also benefits from many oc-
casional contributors proposing small bugfixes or improvements. Development
proceeds on GitHub3, a platform which greatly facilitates this kind of collabora-
tion. Because of the large number of developers, emphasis is put on keeping the
project maintainable. In particular, code must follow specific quality guidelines,
such as style consistency and unit-test coverage. Documentation and examples
are required for all features, and major changes must pass code review by at
least two developers not involved in the implementation of the proposed change.

scikit-learn’s popularity can be gauged from various indicators such as the
hundreds of citations in scientific publications, successes in various machine
learning challenges (e.g., Kaggle), and statistics derived from our repositories
and mailing list. At the time of writing, the project is watched by 1365 people
and forked 693 times on GitHub; the mailing list receives more than 300 mails
per month; version control logs show 183 unique contributors to the codebase and
the online documentation receives 37,000 unique visitors and 295,000 pageviews
per month.

Pedregosa et al. (2011) briefly presented scikit-learn and benchmarked it
against several competitors. In this paper, we instead present an in-depth analy-
sis of design choices made when building the library, detailing how we organized
and operationalized common machine learning concepts. We first present in sec-
tion 2 the central application programming interface (API) and then describe,
in section 3, advanced API mechanisms built on the core interface. Section 4
briefly describes the implementation. Section 5 then compares scikit-learn to
other major projects in terms of API. Section 6 outlines some of the objectives

2 http://scikit-image.org
3 https://github.com/scikit-learn



3

for a scikit-learn 1.0 release. We conclude by summarizing the major points of
this paper in section 7.

2 Core API

All objects within scikit-learn share a uniform common basic API consisting of
three complementary interfaces: an estimator interface for building and fitting
models, a predictor interface for making predictions and a transformer interface
for converting data. In this section, we describe these three interfaces, after
reviewing our general principles and data representation choices.

2.1 General principles

As much as possible, our design choices have been guided so as to avoid the
proliferation of framework code. We try to adopt simple conventions and to
limit to a minimum the number of methods an object must implement. The API
is designed to adhere to the following broad principles:

Consistency. All objects (basic or composite) share a consistent interface com-
posed of a limited set of methods. This interface is documented in a consis-
tent manner for all objects.

Inspection. Constructor parameters and parameter values determined by learn-
ing algorithms are stored and exposed as public attributes.

Non-proliferation of classes. Learning algorithms are the only objects to be
represented using custom classes. Datasets are represented as NumPy arrays
or SciPy sparse matrices. Hyper-parameter names and values are represented
as standard Python strings or numbers whenever possible. This keeps scikit-
learn easy to use and easy to combine with other libraries.

Composition. Many machine learning tasks are expressible as sequences or
combinations of transformations to data. Some learning algorithms are also
naturally viewed as meta-algorithms parametrized on other algorithms. When-
ever feasible, such algorithms are implemented and composed from existing
building blocks.

Sensible defaults. Whenever an operation requires a user-defined parameter,
an appropriate default value is defined by the library. The default value
should cause the operation to be performed in a sensible way (giving a base-
line solution for the task at hand).

2.2 Data representation

In most machine learning tasks, data is modeled as a set of variables. For ex-
ample, in a supervised learning task, the goal is to find a mapping from input
variables X1, . . . Xp, called features, to some output variables Y . A sample is
then defined as a pair of values ([x1, . . . , xp]T, y) of these variables. A widely
used representation of a dataset, a collection of such samples, is a pair of ma-
trices with numerical values: one for the input values and one for the output



4

values. Each row of these matrices corresponds to one sample of the dataset and
each column to one variable of the problem.

In scikit-learn, we chose a representation of data that is as close as possible
to the matrix representation: datasets are encoded as NumPy multidimensional
arrays for dense data and as SciPy sparse matrices for sparse data. While these
may seem rather unsophisticated data representations when compared to more
object-oriented constructs, such as the ones used by Weka (Hall et al., 2009),
they bring the prime advantage of allowing us to rely on efficient NumPy and
SciPy vectorized operations while keeping the code short and readable. This
design choice has also been motivated by the fact that, given their pervasiveness
in many other scientific Python packages, many scientific users of Python are
already familiar with NumPy dense arrays and SciPy sparse matrices. From a
practical point of view, these formats also provide a collection of data loading and
conversion tools which make them very easy to use in many contexts. Moreover,
for tasks where the inputs are text files or semi-structured objects, we provide
vectorizer objects that efficiently convert such data to the NumPy or SciPy
formats.

For efficiency reasons, the public interface is oriented towards processing
batches of samples rather than single samples per API call. While classifica-
tion and regression algorithms can indeed make predictions for single samples,
scikit-learn objects are not optimized for this use case. (The few online learning
algorithms implemented are intended to take mini-batches.) Batch processing
makes optimal use of NumPy and SciPy by preventing the overhead inherent to
Python function calls or due to per-element dynamic type checking. Although
this might seem to be an artifact of the Python language, and therefore an imple-
mentation detail that leaks into the API, we argue that APIs should be designed
so as not to tie a library to a suboptimal implementation strategy. As such, batch
processing enables fast implementations in lower-level languages (where memory
hierarchy effects and the possibility of internal parallelization come into play).

2.3 Estimators

The estimator interface is at the core of the library. It defines instantiation
mechanisms of objects and exposes a fit method for learning a model from
training data. All supervised and unsupervised learning algorithms (e.g., for
classification, regression or clustering) are offered as objects implementing this
interface. Machine learning tasks like feature extraction, feature selection or
dimensionality reduction are also provided as estimators.

Estimator initialization and actual learning are strictly separated, in a way
that is similar to partial function application: an estimator is initialized from a
set of named constant hyper-parameter values (e.g., the C constant in SVMs)
and can be considered as a function that maps these values to actual learning
algorithms. The constructor of an estimator does not see any actual data, nor
does it perform any actual learning. All it does is attach the given parameters
to the object. For the sake of convenient model inspection, hyper-parameters
are set as public attributes, which is especially important in model selection



5

settings. For ease of use, default hyper-parameter values are also provided for all
built-in estimators. These default values are set to be relevant in many common
situations in order to make estimators as effective as possible out-of-box for
non-experts.

Actual learning is performed by the fit method. This method is called with
training data (e.g., supplied as two arrays X train and y train in supervised
learning estimators). Its task is to run a learning algorithm and to determine
model-specific parameters from the training data and set these as attributes on
the estimator object. As a convention, the parameters learned by an estimator
are exposed as public attributes with names suffixed with a trailing underscore
(e.g., coef for the learned coefficients of a linear model), again to facilitate
model inspection. In the partial application view, fit is a function from data
to a model of that data. It always returns the estimator object it was called on,
which now serves as a model of its input and can be used to perform predictions
or transformations of input data.

From the start, the choice to let a single object serve dual purpose as estima-
tor and model has mostly been driven by usability and technical considerations.
From the user point of view, having two coupled instances (i.e., an estimator
object, used as a factory, and a model object, produced by the estimator) in-
deed decreases the ease of use and is also more likely to unnecessarily confuse
newcomers. From the developer point of view, decoupling estimators from mod-
els also creates parallel class hierarchies and increases the overall maintenance
complexity of the project. For these practical reasons, we believe that decoupling
estimators from models is not worth the effort. A good reason for decoupling
however, would be that it makes it possible to ship a model in a new environment
without having to deal with potentially complex software dependencies. Such a
feature could however still be implemented in scikit-learn by making estimators
able to export a fitted model, using the information from its public attributes,
to an agnostic model description such as PMML (Guazzelli et al., 2009).

To illustrate the initialize-fit sequence, let us consider a supervised learning
task using logistic regression. Given the API defined above, solving this problem
is as simple as the following example.

from sklearn.linear_model import LogisticRegression

clf = LogisticRegression(penalty="l1")

clf.fit(X_train, y_train)

In this snippet, a LogisticRegression estimator is first initialized by setting the
penalty hyper-parameter to "l1" for `1 regularization. Other hyper-parameters
(such as C, the strength of the regularization) are not explicitly given and thus
set to the default values. Upon calling fit, a model is learned from the training
arrays X train and y train, and stored within the object for later use. Since
all estimators share the same interface, using a different learning algorithm is as
simple as replacing the constructor (the class name); to build a random forest on



6

the same data, one would simply replace LogisticRegression(penalty="l1")

in the snippet above by RandomForestClassifier().
In scikit-learn, classical learning algorithms are not the only objects to be

implemented as estimators. For example, preprocessing routines (e.g., scaling of
features) or feature extraction techniques (e.g., vectorization of text documents)
also implement the estimator interface. Even stateless processing steps, that do
not require the fit method to perform useful work, implement the estimator
interface. As we will illustrate in the next sections, this design pattern is indeed
of prime importance for consistency, composition and model selection reasons.

2.4 Predictors

The predictor interface extends the notion of an estimator by adding a predict

method that takes an array X test and produces predictions for X test, based on
the learned parameters of the estimator (we call the input to predict “X test”
in order to emphasize that predict generalizes to new data). In the case of
supervised learning estimators, this method typically returns the predicted la-
bels or values computed by the model. Continuing with the previous example,
predicted labels for X test can be obtained using the following snippet:

y_pred = clf.predict(X_test)

Some unsupervised learning estimators may also implement the predict in-
terface. The code in the snippet below fits a k-means model with k = 10 on
training data X train, and then uses the predict method to obtain cluster
labels (integer indices) for unseen data X test.

from sklearn.cluster import KMeans

km = KMeans(n_clusters=10)

km.fit(X_train)

clust_pred = km.predict(X_test)

Apart from predict, predictors may also implement methods that quantify
the confidence of predictions. In the case of linear models, the decision function

method returns the distance of samples to the separating hyperplane. Some pre-
dictors also provide a predict proba method which returns class probabilities.

Finally, predictors must provide a score function to assess their performance
on a batch of input data. In supervised estimators, this method takes as input
arrays X test and y test and typically computes the coefficient of determi-
nation between y test and predict(X test) in regression, or the accuracy in
classification. The only requirement is that the score method return a value
that quantifies the quality of its predictions (the higher, the better). An unsu-
pervised estimator may also expose a score function to compute, for instance,
the likelihood of the given data under its model.



7

2.5 Transformers

Since it is common to modify or filter data before feeding it to a learning algo-
rithm, some estimators in the library implement a transformer interface which
defines a transform method. It takes as input some new data X test and yields
as output a transformed version of X test. Preprocessing, feature selection,
feature extraction and dimensionality reduction algorithms are all provided as
transformers within the library. In our example, to standardize the input X train

to zero mean and unit variance before fitting the logistic regression estimator,
one would write:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(X_train)

X_train = scaler.transform(X_train)

Of course, in practice, it is important to apply the same preprocessing to the test
data X test. Since a StandardScaler estimator stores the mean and standard
deviation that it computed for the training set, transforming an unseen test set
X test maps it into the appropriate region of feature space:

X_test = scaler.transform(X_test)

Transformers also include a variety of learning algorithms, such as dimension
reduction (PCA, manifold learning), kernel approximation, and other mappings
from one feature space to another.

Additionally, by leveraging the fact that fit always returns the estimator it
was called on, the StandardScaler example above can be rewritten in a single
line using method chaining:

X_train = StandardScaler().fit(X_train).transform(X_train)

Furthermore, every transformer allows fit(X train).transform(X train)

to be written as fit transform(X train). The combined fit transform method
prevents repeated computations. Depending on the transformer, it may skip only
an input validation step, or in fact use a more efficient algorithm for the transfor-
mation. In the same spirit, clustering algorithms provide a fit predict method
that is equivalent to fit followed by predict, returning cluster labels assigned
to the training samples.

3 Advanced API

Building on the core interface introduced in the previous section, we now present
advanced API mechanisms for building meta-estimators, composing complex
estimators and selecting models. We also discuss design choices allowing for easy
usage and extension of scikit-learn.



8

3.1 Meta-estimators

Some machine learning algorithms are expressed naturally as meta-algorithms
parametrized on simpler algorithms. Examples include ensemble methods which
build and combine several simpler models (e.g., decision trees), or multiclass and
multilabel classification schemes which can be used to turn a binary classifier
into a multiclass or multilabel classifier. In scikit-learn, such algorithms are im-
plemented as meta-estimators. They take as input an existing base estimator
and use it internally for learning and making predictions. All meta-estimators
implement the regular estimator interface.

As an example, a logistic regression classifier uses by default a one-vs.-
rest scheme for performing multiclass classification. A different scheme can be
achieved by a meta-estimator wrapping a logistic regression estimator:

from sklearn.multiclass import OneVsOneClassifier

ovo_lr = OneVsOneClassifier(LogisticRegression(penalty="l1"))

For learning, the OneVsOneClassifier object clones the logistic regression esti-

mator multiple times, resulting in a set of K(K−1)
2 estimator objects for K-way

classification, all with the same settings. For predictions, all estimators perform
a binary classification and then vote to make the final decision. The snippet ex-
emplifies the importance of separating object instantiation and actual learning.

Since meta-estimators require users to construct nested objects, the decision
to implement a meta-estimator rather than integrate the behavior it implements
into existing estimators classes is always based on a trade-off between generality
and ease of use. Relating to the example just given, all scikit-learn classifiers are
designed to do multiclass classification and the use of the multiclass module
is only necessary in advanced use cases.

3.2 Pipelines and feature unions

A distinguishing feature of the scikit-learn API is its ability to compose new
estimators from several base estimators. Composition mechanisms can be used
to combine typical machine learning workflows into a single object which is
itself an estimator, and can be employed wherever usual estimators can be used.
In particular, scikit-learn’s model selection routines can be applied to composite
estimators, allowing global optimization of all parameters in a complex workflow.
Composition of estimators can be done in two ways: either sequentially through
Pipeline objects, or in a parallel fashion through FeatureUnion objects.

Pipeline objects chain multiple estimators into a single one. This is useful
since a machine learning workflow typically involves a fixed sequence of process-
ing steps (e.g., feature extraction, dimensionality reduction, learning and making
predictions), many of which perform some kind of learning. A sequence of N such
steps can be combined into a Pipeline if the first N − 1 steps are transformers;
the last can be either a predictor, a transformer or both.



9

Conceptually, fitting a pipeline to a training set amounts to the following
recursive procedure: i) when only one step remains, call its fit method; ii)
otherwise, fit the first step, use it to transform the training set and fit the
rest of the pipeline with the transformed data. The pipeline exposes all the
methods the last estimator in the pipe exposes. That is, if the last estimator is
a predictor, the pipeline can itself be used as a predictor. If the last estimator is
a transformer, then the pipeline is itself a transformer.

FeatureUnion objects combine multiple transformers into a single one that
concatenates their outputs. A union of two transformers that map input having
d features to d′ and d′′ features respectively is a transformer that maps its d
input features to d′ + d′′ features. This generalizes in the obvious way to more
than two transformers. In terms of API, a FeatureUnion takes as input a list of
transformers. Calling fit on the union is the same as calling fit independently
on each of the transformers and then joining their outputs.

Pipeline and FeatureUnion can be combined to create complex and nested
workflows. The following snippet illustrates how to create a complex estimator
that computes both linear PCA and kernel PCA features on X train (through a
FeatureUnion), selects the 10 best features in the combination according to an
ANOVA test and feeds those to an `2-regularized logistic regression model.

from sklearn.pipeline import FeatureUnion, Pipeline

from sklearn.decomposition import PCA, KernelPCA

from sklearn.feature_selection import SelectKBest

union = FeatureUnion([("pca", PCA()),

("kpca", KernelPCA(kernel="rbf"))])

Pipeline([("feat_union", union),

("feat_sel", SelectKBest(k=10)),

("log_reg", LogisticRegression(penalty="l2"))

]).fit(X_train, y_train).predict(X_test)

3.3 Model selection

As introduced in Section 2.3, hyper-parameters set in the constructor of an
estimator determine the behavior of the learning algorithm and hence the per-
formance of the resulting model on unseen data. The problem of model selection
is therefore to find, within some hyper-parameter space, the best combination of
hyper-parameters, with respect to some user-specified criterion. For example, a
decision tree with too small a value for the maximal tree depth parameter will
tend to underfit, while too large a value will make it overfit.

In scikit-learn, model selection is supported in two distinct meta-estimators,
GridSearchCV and RandomizedSearchCV. They take as input an estimator (basic
or composite), whose hyper-parameters must be optimized, and a set of hyper-
parameter settings to search through. This set is represented as a mapping of



10

parameter names to a set of discrete choices in the case of grid search, which
exhaustively enumerates the “grid” (cartesian product) of complete parameter
combinations. Randomized search is a smarter algorithm that avoids the com-
binatorial explosion in grid search by sampling a fixed number of times from its
parameter distributions (see Bergstra and Bengio, 2012).

Optionally, the model selection algorithms also take a cross-validation scheme
and a score function. scikit-learn provides various such cross-validation schemes,
including k-fold (default), stratified k-fold and leave-one-out. The score function
used by default is the estimator’s score method, but the library provides a
variety of alternatives that the user can choose from, including accuracy, AUC
and F1 score for classification, R2 score and mean squared error for regression.

For each hyper-parameter combination and each train/validation split gen-
erated by the cross-validation scheme, GridSearchCV and RandomizedSearchCV

fit their base estimator on the training set and evaluate its performance on the
validation set. In the end, the best performing model on average is retained and
exposed as the public attribute best estimator .

The snippet below illustrates how to find hyper-parameter settings for an
SVM classifier (SVC) that maximize F1 score through 10-fold cross-validation
on the training set.

from sklearn.grid_search import GridSearchCV

from sklearn.svm import SVC

param_grid = [

{"kernel": ["linear"], "C": [1, 10, 100, 1000]},

{"kernel": ["rbf"], "C": [1, 10, 100, 1000],

"gamma": [0.001, 0.0001]}

]

clf = GridSearchCV(SVC(), param_grid, scoring="f1", cv=10)

clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)

In this example, two distinct hyper-parameter grids are considered for the linear
and radial basis function (RBF) kernels; an SVM with a linear kernel accepts
a γ parameter, but ignores it, so using a single parameter grid would waste
computing time trying out effectively equivalent settings. Additionally, we see
that GridSearchCV has a predict method, just like any other classifier: it dele-
gates the predict, predict proba, transform and score methods to the best
estimator (optionally after re-fitting it on the whole training set).

3.4 Extending scikit-learn

To ease code reuse, simplify implementation and skip the introduction of su-
perfluous classes, the Python principle of duck typing is exploited throughout



11

the codebase. This means that estimators are defined by interface, not by in-
heritance, where the interface is entirely implicit as far as the programming
language is concerned. Duck typing allows both for extensibility and flexibility:
as long as an estimator follows the API and conventions outlined in Section 2,
then it can be used in lieu of a built-in estimator (e.g., it can be plugged into
pipelines or grid search) and external developers are not forced to inherit from
any scikit-learn class.

In other places of the library, in particular in the vectorization code for
unstructured input, the toolkit is also designed to be extensible. Here, estimators
provide hooks for user-defined code: objects or functions that follow a specific
API can be given as arguments at vectorizer construction time. The library
then calls into this code, communicating with it by passing objects of standard
Python/NumPy types. Again, such external user code can be kept agnostic of
the scikit-learn class hierarchy.

Our rule of thumb is that user code should not be tied to scikit-learn—which
is a library, and not a framework. This principle indeed avoids a well-known prob-
lem with object-oriented design, which is that users wanting a “banana” should
not get “a gorilla holding the banana and the entire jungle” (J. Armstrong, cited
by Seibel, 2009, p. 213). That is, programs using scikit-learn should not be inti-
mately tied to it, so that their code can be reused with other toolkits or in other
contexts.

4 Implementation

Our implementation guidelines emphasize writing efficient but readable code. In
particular, we focus on making the codebase easily maintainable and understand-
able in order to favor external contributions. Whenever practicable, algorithms
implemented in scikit-learn are written in Python, using NumPy vector opera-
tions for numerical work. This allows for the code to remain concise, readable and
efficient. For critical algorithms that cannot be easily and efficiently expressed as
NumPy operations, we rely on Cython (Behnel et al., 2011) to achieve compet-
itive performance and scalability. Cython is a compiled programming language
that extends Python with static typing. It produces efficient C extension mod-
ules that are directly importable from the Python run-time system. Examples
of algorithms written in Cython include stochastic gradient descent for linear
models, some graph-based clustering algorithms and decision trees.

To facilitate the installation and thus adoption of scikit-learn, the set of
external dependencies is kept to a bare minimum: only Python, NumPy and
SciPy are required for a functioning installation. Binary distributions of these
are available for the major platforms. Visualization functionality depends on
Matplotlib (Hunter, 2007) and/or Graphviz (Gansner and North, 2000), but
neither is required to perform machine learning or prediction. When feasible,
external libraries are integrated into the codebase. In particular, scikit-learn
includes modified versions of LIBSVM and LIBLINEAR (Chang and Lin, 2011;
Fan et al., 2008), both written in C++ and wrapped using Cython modules.



12

5 Related software

Recent years have witnessed a rising interest in machine learning and data mining
with applications in many fields. With this rise comes a host of machine learning
packages (both open source and proprietary) with which scikit-learn competes.
Some of those, including Weka (Hall et al., 2009) or Orange (Demšar et al.,
2004), offer APIs but actually focus on the use of a graphical user interface (GUI)
which allows novices to easily apply machine learning algorithms. By contrast,
the target audience of scikit-learn is capable of programming, and therefore
we focus on developing a usable and consistent API, rather than expend effort
into creating a GUI. In addition, while GUIs are useful tools, they sometimes
make reproducibility difficult in the case of complex workflows (although those
packages usually have developed a GUI for managing complex tasks).

Other existing machine learning packages such as SofiaML4 (Sculley, 2009)
and Vowpal Wabbit5 are intended to be used as command-line tools (and some-
times do not offer any type of API). While these packages have the advantage
that their users are not tied to a particular programming language, the users will
find that they still need programming to process input/output, and will do so in
a variety of languages. By contrast, scikit-learn allows users to implement that
entire workflow in a single program, written in a single language, and developed
in a single working environment. This also makes it easier for researchers and
developers to exchange and collaborate on software, as dependencies and setup
are kept to a minimum.

Similar benefits hold in the case of specialized languages for numeric and
statistical programming such as matlab and R (R Core Team, 2013). In com-
parison to these, though, Python has the distinct advantage that it is a general
purpose language, while NumPy and SciPy extend it with functionality similar
to that offered by matlab and R. Python has strong language and standard
library support for such tasks as string/text processing, interprocess communi-
cation, networking and many of the other auxiliary tasks that machine learning
programs (whether academic or commercial) routinely need to perform. While
support for many of these tasks is improving in languages such as matlab and
R, they still lag behind Python in their general purpose applicability. In many
applications of machine learning these tasks, such as data access, data prepro-
cessing and reporting, can be a more significant task than applying the actual
learning algorithm.

Within the realm of Python, a package that deserves mention is the Gensim
topic modeling toolkit (Řeh̊uřek and Sojka, 2010), which exemplifies a different
style of API design geared toward scalable processing of “big data”. Gensim’s
method of dealing with large datasets is to use algorithms that have O(1) space
complexity and can be updated online. The API is designed around the Python
concept of an iterable (supported in the language by a restricted form of co-
routines called generators). While the text vectorizers part of scikit-learn also

4 https://code.google.com/p/sofia-ml
5 http://hunch.net/∼vw



13

use iterables to some extent, they still produce entire sparse matrices, intended
to be used for batch or mini-batch learning. This is the case even in the stateless,
O(1) memory vectorizers that implement the hashing trick of Weinberger et al.
(2009). This way of processing, as argued earlier in Section 2.2, reduces various
forms of overhead and allows effective use of the vectorized operations provided
by NumPy and SciPy. We make no attempt to hide this batch-oriented processing
from the user, allowing control over the amount of memory actually dedicated
to scikit-learn algorithms.

6 Future directions

There are several directions that the scikit-learn project aims to focus on in
future development. At present, the library does not support some classical ma-
chine learning algorithms, including neural networks, ensemble meta-estimators
for bagging or subsampling strategies and missing value completion algorithms.
However, tasks like structured prediction or reinforcement learning are consid-
ered out of scope for the project, since they would require quite different data
representations and APIs.

At a lower-level, parallel processing is a potential point of improvement. Some
estimators in scikit-learn are already able to leverage multicore processors, but
only in a coarse-grained fashion. At present, parallel processing is difficult to
accomplish in the Python environment; scikit-learn targets the main implemen-
tation, CPython, which cannot execute Python code on multiple CPUs simul-
taneously. It follows that any parallel task decomposition must either be done
inside Cython modules, or at a level high enough to warrant the overhead of
creating multiple OS-level processes, and the ensuing inter-process communica-
tion. Parallel grid search is an example of the latter approach which has already
been implemented. Recent versions of Cython include support for the OpenMP
standard (Dagum and Menon, 1998), which is a viable candidate technology for
more fine-grained multicore support in scikit-learn.

Finally, a long-term solution for model persistence is missing. Currently,
Python’s pickle module is recommended for serialization, but this only offers a
file format, not a way of preserving compatibility between versions. Also, it has
security problems because its deserializer may execute arbitrary Python code,
so models from untrusted sources cannot be safely “unpickled”.

These API issues will be addressed in the future in preparation for the 1.0
release of scikit-learn.

7 Conclusion

We have discussed the scikit-learn API and the way it maps machine learning
concepts and tasks onto objects and operations in the Python programming
language. We have shown how a consistent API across the package makes scikit-
learn very usable in practice: experimenting with different learning algorithm is
as simple as substituting a new class definition. Through composition interfaces



14

such as Pipelines, Feature Unions, and meta-estimators, these simple building
blocks lead to an API which is powerful, and can accomplish a wide variety of
learning tasks within a small amount of easy-to-read code. Through duck-typing,
the consistent API leads to a library that is easily extensible, and allows user-
defined estimators to be incorporated into the scikit-learn workflow without any
explicit object inheritance.

While part of the scikit-learn API is necessarily Python-specific, core con-
cepts may be applicable to machine learning applications and toolkits written
in other (dynamic) programming languages. The power, and extensibility of the
scikit-learn API is evidenced by the large and growing user-base, its use to
solve real problems across a wide array of fields, as well as the appearance of
third-party packages that follow the scikit-learn conventions. Examples of such
packages include astroML6 (Vanderplas et al., 2012), a package providing ma-
chine learning tools for astronomers, and wiseRF 7, a commercial random forest
implementation. The source code of the recently-proposed sparse multiclass al-
gorithm of Blondel et al. (2013), released as part of the lightning8 package, also
follows the scikit-learn conventions. To maximize ease of use, we encourage more
researchers to follow these conventions when releasing their software.

Acknowledgments

The authors and contributors acknowledge active support from INRIA. Past
and present sponsors of the project also include Google for funding scholarships
through its Summer of Code program, the Python Software Foundation and
Tinyclues for funding coding sprints.

Gilles Louppe and Arnaud Joly are research fellows of the Belgian Fonds de
la Recherche Scientifique (FNRS) and acknowledge its financial support.

6 http://astroml.org
7 http://wise.io
8 https://github.com/mblondel/lightning



Bibliography

S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith. Cython:
the best of both worlds. Comp. in Sci. & Eng., 13(2):31–39, 2011.

J. Bergstra and J. Bengio. Random search for hyper-parameter optimization. JMLR,
13:281–305, 2012.

M. Blondel, K. Seki, and K. Uehara. Block coordinate descent algorithms for large-scale
sparse multiclass classification. Machine Learning, 93(1):31–52, 2013.

C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines. ACM
Trans. on Intelligent Systems and Technology, 2(3):27, 2011.

L. Dagum and R. Menon. OpenMP: an industry standard API for shared-memory
programming. Computational Sci. & Eng., 5(1):46–55, 1998.

J. Demšar, B. Zupan, G. Leban, and T. Curk. Orange: From experimental machine
learning to interactive data mining. In Knowledge Discovery in Databases PKDD
2004, Lecture Notes in Computer Science. Springer, 2004.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A
library for large linear classification. JMLR, 9:1871–1874, 2008.

E. R. Gansner and S. C. North. An open graph visualization system and its applications
to software engineering. Software—Practice and Experience, 30(11):1203–1233, 2000.

A. Guazzelli, M. Zeller, W.-C. Lin, and G. Williams. Pmml: An open standard for
sharing models. The R Journal, 1(1):60–65, 2009.

V. Haenel, E. Gouillart, and G. Varoquaux. Python scientific lecture notes, 2013. URL
http://scipy-lectures.github.io/.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The
WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter,
11(1):10–18, 2009.

J. D. Hunter. Matplotlib: A 2d graphics environment. Comp. in Sci. & Eng., pages
90–95, 2007.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
JMLR, 12:2825–2830, 2011.

F. Perez and B. E. Granger. IPython: a system for interactive scientific computing.
Comp. in Sci. & Eng., 9(3):21–29, 2007.

R Core Team. R: A Language and Environment for Statistical Computing. R Founda-
tion, Vienna, Austria, 2013. URL http://www.R-project.org.

R. Řeh̊uřek and P. Sojka. Software framework for topic modelling with large corpora.
In Proc. LREC Workshop on New Challenges for NLP Frameworks, pages 46–50,
2010.

D. Sculley. Large scale learning to rank. In NIPS Workshop on Advances in Ranking,
pages 1–6, 2009.

P. Seibel. Coders at Work: Reflections on the Craft of Programming. Apress, 2009.
J. Vanderplas, A. Connolly, Ž. Ivezić, and A. Gray. Introduction to astroML: Machine

learning for astrophysics. In Conf. on Intelligent Data Understanding (CIDU), pages
47–54, 2012.

S. van der Walt, S. C. Colbert, and G. Varoquaux. The NumPy array: a structure for
efficient numerical computation. Comp. in Sci. & Eng., 13(2):22–30, 2011.

K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature hashing
for large scale multitask learning. In Proc. ICML, 2009.


