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Closed functions

The domain of a function is denoted dom(f ) = {x ∈ Rd : f (x) <∞}

A function is closed if for all α ∈ R the sub-level set

{x ∈ dom(f ) : f (x) ≤ α}

is closed (reminder: a set is closed if it contains its boundary)

If f is continuous and dom(f ) is closed then f is closed

Example 1: f (x) = x log x is not closed over dom(f ) = R>0

Example 2: f (x) = x log x is closed over dom(f ) = R≥0, f (0) = 0

Example 3: the indicator function IC is closed if C is closed

IC(x) =

{
0 if x ∈ C
∞ if x 6∈ C.
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Convex conjugate
Fix a slope y . What is the intercept b of the tighest linear lower
bound of f? In other words, for all x ∈ dom(f ), we want

〈x , y〉 − b ≤ f (x)⇔ 〈x , y〉 − f (x) ≤ b
⇔ b = sup

x∈dom(f )

〈x , y〉 − f (x)

The value of the intercept is denoted f ∗(y), the conjugate of f (x).

slope y

x?

f(x)

−f∗(y)
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Convex conjugate

Equivalent definition

−f ∗(y) = inf
x∈dom(f )

f (x)− 〈x , y〉

f ∗ can take values on the extended real line R ∪ {∞}

f ∗ is closed and convex (even when f is not)

Fenchel-Young inequality: for all x , y

f (x) + f ∗(y) ≥ 〈x , y〉
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Convex conjugate examples

Example 1: f (x) = IC(x), the indicator function of C

f ∗(y) = sup
x∈dom(f )

〈x , y〉 − f (x) = sup
x∈C
〈x , y〉

f ∗ is called the support function of C

Example 2: f (x) = 〈x , log x〉, then

f ∗(y) =
d∑

i=1

eyi−1

Example 3: f (x) = 〈x , log x〉+ I4d (x)

f ∗(y) =
exp(y)∑d

i=1 exp(yi)
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Convex conjugate calculus

Separable sum

f (x) =
d∑

i=1

fi(xi) f ∗(y) =
d∑

i=1

f ∗i (yi)

Scalar multiplication (c > 0)

f (x) = c · g(x) f ∗(y) = c · g∗(y/c)

Addition to affine function / translation of argument

f (x) = g(x) + 〈a, x〉+ b f ∗(y) = g∗(y − a)− b

Composition with invertible linear mapping

f (x) = g(Ax) f ∗(y) = g∗(A−T y)
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Biconjugates

The bi-conjugate

f ∗∗(x) = sup
y∈dom(f∗)

〈x , y〉 − f ∗(y)

f ∗∗ is closed and convex

If f is closed and convex then

f ∗∗(x) = f (x)

If f is not convex, f ∗∗ is the tightest convex lower bound of f
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Subgradients

Recall that a differentiable convex function always lies above its
tangents, i.e., for all x , y ∈ dom(f )

f (y) ≥ f (x) + 〈∇f (x), y − x〉

g is the subgradient of a convex function f if for all x , y ∈ dom(f )

f (y) ≥ f (x) + 〈g, y − x〉

Subgradient

g is a subgradient of a convex function f at x 2 dom f if

f (y) � f (x) + gT(y � x) for all y 2 dom f

x1 x2

f (x1) + gT
1 (y � x1)

f (x1) + gT
2 (y � x1)

f (x2) + gT
3 (y � x2)

f (y)

g1, g2 are subgradients at x1; g3 is a subgradient at x2

Subgradients 2.3
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Subdifferential

The subdifferential is the set of all subgradients

∂f (x) = {g : f (y) ≥ f (x) + 〈g, y − x〉 ∀y ∈ dom(f )}

Example: f (x) = |x |

Examples

Absolute value f (x) = |x |

x

f (x)

1

�1

x

@ f (x)

Euclidean norm f (x) = kxk2

@ f (x) = { 1
kxk2

x} if x , 0, @ f (x) = {g | kgk2  1} if x = 0

Subgradients 2.8

∂f (0) = [−1,1] ∂f (x) = {∇f (x)} if x 6= 0
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Conjugates and subdifferentials

Alternative definition of subdifferential

∂f ∗(y) = {x ∈ dom(f ) : f (x) + f ∗(y) = 〈x , y〉}

From Danskin’s theorem

∂f ∗(y) = argmax
x∈dom(f )

〈x , y〉 − f (x)

If f is strictly convex

∇f ∗(y) = argmax
x∈dom(f )

〈x , y〉 − f (x)

And similarly for ∂f (x), ∇f (x)
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Bregman divergences
Let f be convex and differentiable.

The Bregman divergence generated by f between u and v is

Df (u, v) = f (u)− f (v)− 〈∇f (v),u − v〉

It is the difference between f (u) and its linearization around v .

u

Df (u, v)

v

f(u)

f(v) + 〈∇f(v), u− v〉

Mathieu Blondel Duality in machine learning 12 / 47



Bregman divergences

Recall that a differentiable convex function always lies above its
tangents, i.e., for all u, v

f (u) ≥ f (v) + 〈∇f (v),u − v〉

The Bregman divergence is thus non-negative for all u, v

Df (u, v) ≥ 0

Put differently, a differentiable function f is convex if and only if it
generates a non-negative Bregman divergence.

Not necessarily symmetric
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Bregman divergences

Example 1: if f (x) = 1
2‖x‖

2
2, then Df is the squared Euclidean

distance
Df (u, v) =

1
2
‖u − v‖22

Example 2: if f (x) = 〈x , log x〉, then Df is the (generalized)
Kullback-Leibler divergence

Df (p,q) =
d∑

i=1

pi log
pi

qi
−

d∑
i=1

pi +
d∑

i=1

qi
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Strong convexity
f is said to be µ-strongly convex w.r.t. a norm ‖ · ‖ over C if

µ

2
‖u − v‖2 ≤ Df (u, v) for all u, v ∈ C

Big µ

Small µ

Example 1: f (x) = 1
2‖x‖

2
2 is 1-strongly convex w.r.t. ‖ · ‖2 over Rd .

Example 2: f (x) = 〈x , log x〉 is 1-strongly convex w.r.t. ‖ · ‖1 over
the probability simplex 4d = {p ∈ Rd

+ : ‖p‖1 = 1}.
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Strong convexity

Pinsker’s inequality
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1.2 KL(p, q)
0.5||p q||21

p = (π,1− π),q = (0.3,0.7)
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Smoothness
f is said to be L-smooth w.r.t. a norm ‖ · ‖ over C if

Df (u, v) ≤ L
2
‖u − v‖2 for all u, v ∈ C

Small L

Big L

Example 1: f (x) = 1
2‖x‖

2
2 is 1-smooth w.r.t. ‖ · ‖2 over Rd .

Example 2: f (x) = log
∑

i exi is 1-smooth w.r.t. ‖ · ‖∞ over Rd
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Hessian bounds

When f is twice differentiable, this also leads to bounds on ∇2f

When f is strongly convex, we have

µ · Idd � ∇2f

When f is smooth, we have

∇2f � L · Idd

Functions can be both strongly-convex and smooth, e.g., the sum
of a smooth function and a strongly-convex function.
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Lipschitz functions

Given a norm ‖x‖ on C, its dual (also on C) is

‖y‖∗ = max
‖x‖≤1

〈x , y〉

Examples: || · ‖2 is dual with itself, ‖ · ‖1 is dual with ‖ · ‖∞

A function g : Rd → Rp is said to be L-Lipschitz continuous w.r.t.
‖ · ‖ over C if for all x , y ∈ C ⊆ Rd

‖g(x)− g(y)‖∗ ≤ L‖x − y‖

Choose g = ∇f . Then f is said to have Lipschitz-continuous
gradients.

Fact. A function is L-smooth if and only if it has L-Lipschitz
continuous gradients.
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Strong convexity and smoothness duality

Theorem.

f is µ-strongly convex w.r.t. ‖ · ‖ ⇔ f ∗ is 1
µ -smooth w.r.t. ‖ · ‖∗

Example 1:
f (x) = µ

2‖x‖
2 is µ-strongly convex w.r.t. ‖ · ‖,

f ∗(y) = 1
2µ‖y‖

2
∗ is 1

µ -smooth w.r.t. ‖ · ‖∗.

Example 2:
f (x) = 〈x , log x〉 is 1-strongly convex w.r.t. ‖ · ‖1 over 4d ,
f ∗(y) = log

∑
i eyi is 1-smooth w.r.t. ‖ · ‖∞ over Rd .
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Smoothing: Moreau-Yosida regularization

Suppose we have a non-smooth function g(x), e.g., g(x) = |x |

We can create a smooth version of g by

gµ(x) = min
u

g(u) +
1

2µ
‖x − u‖22

This is also called the inf-convolution of g with 1
2µ‖ · ‖

2
2

The gradient of gµ is equal to the proximity operator of µg

∇gµ(x) = u?

= argmin
u

g(u) +
1

2µ
‖x − u‖22

= argmin
u

µg(u) +
1
2
‖x − u‖22

= proxµg(x)
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Smoothing: Moreau-Yosida regularization

Example: g(x) = |x |

The proximity operator is the soft-thresholding operator

u? = argmin
u

µ|u|+ 1
2
‖x − u‖22 =

{
0 if |x | ≤ µ
x − µsign(x) if |x | > µ.

Using gµ(x) = |u?|+ 1
2µ‖x − u?‖22, we get

gµ(x) =

{
x2

2µ if |x | ≤ µ
|x | − µ

2 if |x | > µ.

This is known as the Huber loss.
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Smoothing: Moreau-Yosida regularization
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Smoothing: dual approach

Suppose we want to smooth a convex function g(x)

Step 1: derive the conjugate g∗(y)

Step 2: add regularization

g∗µ(y) = g∗(y) +
µ

2
‖y‖22

Step 3: derive the bi-conjugate

g∗∗µ (x) = gµ(x) = max
y∈dom(g∗)

〈x , y〉 − g∗µ(y)

Equivalent (dual) to Moreau-Yosida regularization!

By duality, gµ(x) is 1
µ -smooth since µ

2‖ · ‖
2
2 is µ-strongly convex.
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Smoothing: dual approach

Example 1: g(x) = |x |

Step 1: g∗(y) = I[−1,1](y)

Step 2: add regularization

g∗µ(y) = I[−1,1](y) +
µ

2
y2

Step 3: derive the bi-conjugate

g∗∗µ (x) = gµ(x) = max
y∈[−1,1]

x · y − µ

2
y2

Solution:

gµ(x) = x · y? − µ

2
(y?)2 where y? = clipping[−1,1]

(
1
µ

x
)
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Smoothing: dual approach

Example 2: g(x) = max(0, x), i.e., the relu function

Step 1: g∗(y) = I[0,1](y)

Step 2: add regularization

g∗µ(y) = I[0,1](y) +
µ

2
y2

Step 3: derive the bi-conjugate

g∗∗µ (x) = gµ(x) = max
y∈[0,1]

x · y − µ

2
y2

Solution:

gµ(x) = x · y? − µ

2
(y?)2 where y? = clipping[0,1]

(
1
µ

x
)
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Smoothing: dual approach
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Smoothing: dual approach

Regularization is not limited to µ
2‖y‖

2

Any strongly-convex regularization can be used

Example: softmax

g(x) = max
i∈{1,...,d}

xi

g∗(y) = I4d (y)

g∗µ(y) = I4d (y) + µ〈y , log y〉

gµ(x) = µ log
d∑

i=1

exp(xi/µ)

∇gµ(x) =
exp(x/µ)∑d

i=1 exp(xi/µ)
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Fenchel dual

F (θ) convex, G(W ) strictly convex

We are going to derive the Fenchel dual of

min
W∈Rd×k

F (XW ) + G(W )

where X ∈ Rn×d and W ∈ Rd×k

Let us rewrite the problem using constraints

min
W∈Rd×k

θ∈Rn×k

F (θ) + G(W ) s.t. θ = XW

F and G now involve different variables (tied by equality constraints)
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Fenchel dual

We now use Lagrange duality

min
W∈Rd×k

θ∈Rn×k

max
α∈Rn×k

F (θ) + G(W ) + 〈α, θ − XW 〉

Since the problem only has linear constraints and is feasible, strong
duality holds (we can swap the min and max)

max
α∈Rn×k

min
W∈Rd×k

θ∈Rn×k

F (θ) + G(W ) + 〈α, θ − XW 〉

We are now going to introduce the convex conjugates of F and G.
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Fenchel dual

For the terms involving θ, we have

min
θ∈Rn×k

F (θ) + 〈α, θ〉 = −F ∗(−α)

For the terms involving W , we have

min
W∈Rk×d

G(W )− 〈α,XW 〉 = min
W∈Rd×k

G(W )− 〈W ,X>α〉

= −G∗(X>α)

To summarize, the dual consists in solving

max
α∈Rn×k

−F ∗(−α)−G∗(X>α)

The primal-dual link is

W ? = ∇G∗(X>α?)
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Fenchel dual for loss sums

Typically, in machine learning, F is a sum of loss terms and G is a
regularization term:

F (θ) =
n∑

i=1

L(θi , yi) where θi = W>xi

Since the sum is separable, we get

F ∗(−α) =
n∑

i=1

L∗(−αi , yi)

where L∗ is the convex conjugate in the first argument of L

What have we gained? If G∗ is simple enough, we can solve the
objective by dual block coordinate ascent.
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Examples of regularizer

Squared L2 norm

G(W ) =
λ

2
‖W‖2F =

λ

2
〈W ,W 〉

G∗(V ) =
1

2λ
‖V‖2F

∇G∗(V ) =
1
λ

V

Elastic-net

G(W ) =
λ

2
‖W‖2F + λρ‖W‖1

G∗(V ) = 〈∇G∗(V ),V 〉 −G(∇G∗(V ))

∇G∗(V ) = argmin
W

1
2
‖W − V/λ‖2F + ρ‖W‖1

The last operation is the soft-thresholding operator (element-wise).
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Fenchel-Young losses

The Fenchel-Young loss generated by Ω

LΩ(θi , yi) = Ω∗(θi) + Ω(yi)− 〈θi , yi〉

Non-negative (Fenchel-Young inequality)

Convex in θ even when Ω is not

If Ω is strictly convex, the loss is zero if and only if

yi = ∇Ω∗(θi) = argmax
y ′∈dom(Ω)

〈y ′, θi〉 − Ω(y ′)

Conjugate function (in the first argument)

L∗Ω(−αi , yi) = Ω(yi − αi)− Ω(yi)
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Fenchel-Young losses

Squared loss

Ω(βi) =
1
2
‖βi‖22 LΩ(θi , yi) =

1
2
‖yi − θi‖22

yi ∈ Rk

Multiclass perceptron loss

Ω(βi) = I4k (βi) LΩ(θi , yi) = max
j∈{1,...,k}

θi,j − 〈θi , yi〉

yi ∈ {e1, . . . ,ek}

Multiclass hinge loss

Ω(βi) = I4k (βi)−〈βi , vi〉 LΩ(θi , yi) = max
j∈{1,...,k}

θi,j +vi,j−〈θi , yi〉

vi = 1− yi yi ∈ {e1, . . . ,ek}
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Dual in the case of Fenchel-Young losses

Recall that the dual is

max
α∈Rn×k

−
n∑

i=1

L∗(−αi , yi)−G∗(X>α)

with primal-dual link W ? = ∇G∗(X>α?)

Using the change of variable βi = yi − αi and L = LΩ, we obtain

max
β∈Rn×k

−
n∑

i=1

[Ω(βi)− Ω(yi)]−G∗(X>(Y − β)) s.t. βi ∈ dom(Ω)

with primal-dual link W ? = ∇G∗(X>(Y − β?)). Note that
Y ∈ {0,1}n×k contains the labels in one-hot representation.
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Duality gap

Let P(W ) and D(β) be the primal and dual objectives, respectively.

For all W and β we have

D(β) ≤ P(W )

At the optima, we have

D(β?) = P(W ?)

P(W )− D(β) ≥ 0 is called the duality gap and can be used as a
certificate of optimality.
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Block coordinate ascent

Key idea: on each iteration, pick a block of variables βi ∈ Rk and
update only that block.

If the block has a size of 1, this is called coordinate ascent.

Exact update:

βi ← argmin
βi∈dom(Ω)

Ω(βi)− Ω(yi) + G∗(X>(Y − β)) i ∈ {1, . . . ,n}

Possible schemes for picking i : random, cyclic, shuffled cyclic
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Block coordinate ascent

The sub-problem can be too complicated in some cases.

Approximate update (using a quadratic approximation around the
current iterate βt

i )

βi ← argmin
βi∈dom(Ω)

Ω(βi)− 〈βi ,ui〉+
σi

2
‖βi‖22

= prox 1
σi

Ω(ui/σi)

where σi =
‖xi‖2

2
λ and ui = ∇G∗(X>(Y − β))︸ ︷︷ ︸

W

xi + σiβ
t
i .

Exact if both Ω and G∗ are quadratic

Enjoys a linear rate of convergence w.r.t. the primal objective if Ω
and G are strongly-convex.
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Proximal operators

Squared loss: Ω(βi) = 1
2‖βi‖22

proxτΩ(η) = argmin
β∈Rk

1
2
‖β − η‖22 +

τ

2
‖β‖22 =

η

τ + 1

Perceptron loss: Ω(βi) = I4k (βi)

proxτΩ(η) = argmin
p∈4k

‖p − η‖22

Multiclass hinge loss: Ω(βi) = I4k (βi)− 〈βi , vi〉

proxτΩ(η) = argmin
p∈4k

‖p − (η + τvi)‖22

where vi = 1− yi and yi ∈ {e1, . . . ,ek} is the correct label.
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Summary

Conjugate functions are a powerful abstraction.

Smoothing techniques are enabled by the duality between
smoothness and strong convexity.

The dual can often be easier to solve than the primal.

If the dual is quadratic and the constraints are decomposable, dual
block coordinate ascent is very well suited.
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Lab work

Implement BDCA for the squared loss and the multiclass hinge loss.

Primal objective

P(W ) =
n∑

i=1

LΩ(θi , yi) + G(W ) θi = W>xi ∈ Rk , yi ∈ Rk

Dual objective

D(β) = −
n∑

i=1

[Ω(βi)− Ω(yi)]−G∗(X>(Y − β)) s.t. βi ∈ dom(Ω)

with primal-dual link W ? = ∇G∗(X>(Y − β?)). Note that
Y ∈ {0,1}n×k contains the labels in one-hot representation.

Duality gap P(W )− D(β)

For G, use the squared L2 norm
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Lab work

Approximate block update

βi ← prox 1
σi

Ω(ui/σi)

where σi =
‖xi‖2

2
λ and ui = ∇G∗(X>(Y − β))︸ ︷︷ ︸

W

xi + σiβ
t
i .

Use cyclic block selection

See “Proximal operators” slide for prox expressions

See “Fenchel-Young losses” slide for LΩ and Ω expressions

See “Examples of regularizer” slide for G∗ and ∇G∗ expressions
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