Fast differentiable sorting and ranking

M.Blondel

O. Teboul

Q. Berthet J. Djolonga

March 12th, 2020

Proposed method

Experimental results

Background

Proposed method

Experimental results

DL as Differentiable Programming

DL as Differentiable Programming

Deep learning increasingly synonymous with differentiable programming

Yann LeCun, 2018

"People are now building a **new kind of software** by assembling networks of parameterized **functional blocks** (including loops and conditionals) and by **training** them from examples using some form of gradient-based optimization."

DL as Differentiable Programming

Deep learning increasingly synonymous with differentiable programming

Yann LeCun, 2018

"People are now building a **new kind of software** by assembling networks of parameterized **functional blocks** (including loops and conditionals) and by **training** them from examples using some form of gradient-based optimization."

Many computer programming operations remain **poorly differentiable**

In this work, we focus on **sorting** and **ranking**.

Sorting as subroutine in ML

k-NN

(1) select neighbours(2) majority vote

select top-*k* activations

Trimmed regression

ignore large errors

MoMRanking / SortingMoMRanking / SortingestimatorsLearning to rank $O(n \log n)$

NDCG loss and others

Rank-based statistics

data viewed as ranks

Descriptive statistics

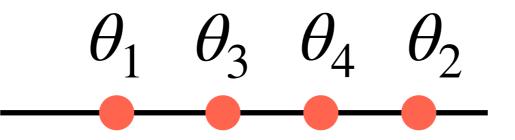
Empirical distribution function quantile normalization

Slide credit: Marco Cuturi

 $\theta_1 \quad \theta_3 \quad \theta_4 \quad \theta_2$

Argsort (decending) $\sigma(\theta) = (2,4,3,1)$

Sorting



Argsort (decending)

 $\sigma(\theta) = (2, 4, 3, 1)$

Sort (descending)

 $s(\theta) \triangleq \theta_{\sigma(\theta)}$

Sorting

$$\theta_1 \quad \theta_3 \quad \theta_4 \quad \theta_2$$

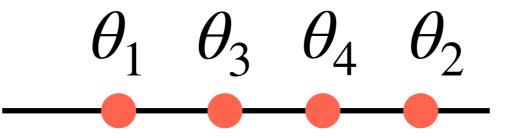
Argsort (decending)

 $\sigma(\theta) = (2,\!4,\!3,\!1)$

Sort (descending)

 $s(\theta) \triangleq \theta_{\sigma(\theta)} = (\theta_2, \theta_4, \theta_3, \theta_1)$

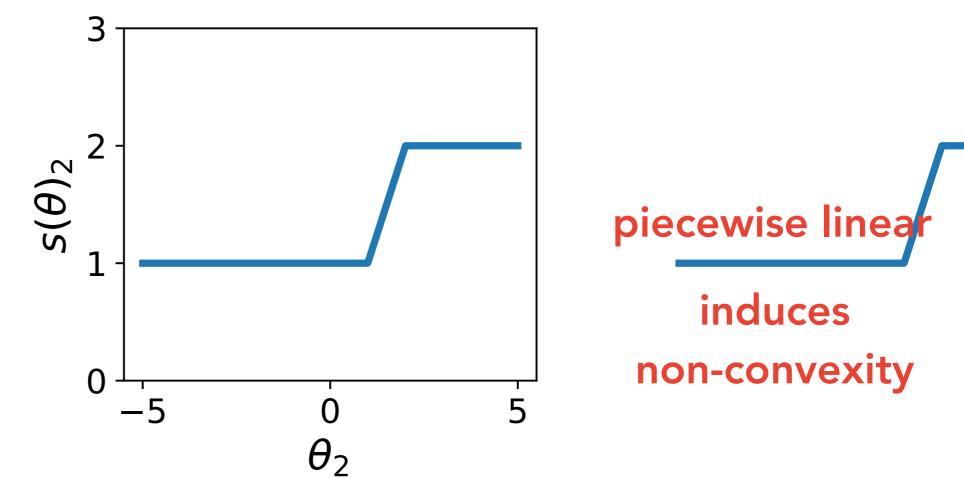
Sorting



Argsort (decending) $\sigma(\theta) = (2,4,3,1)$

Sort (descending)

$$s(\theta) \triangleq \theta_{\sigma(\theta)} = (\theta_2, \theta_4, \theta_3, \theta_1)$$

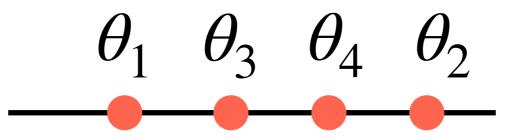


 $\theta_1 \quad \theta_3 \quad \theta_4 \quad \theta_2$

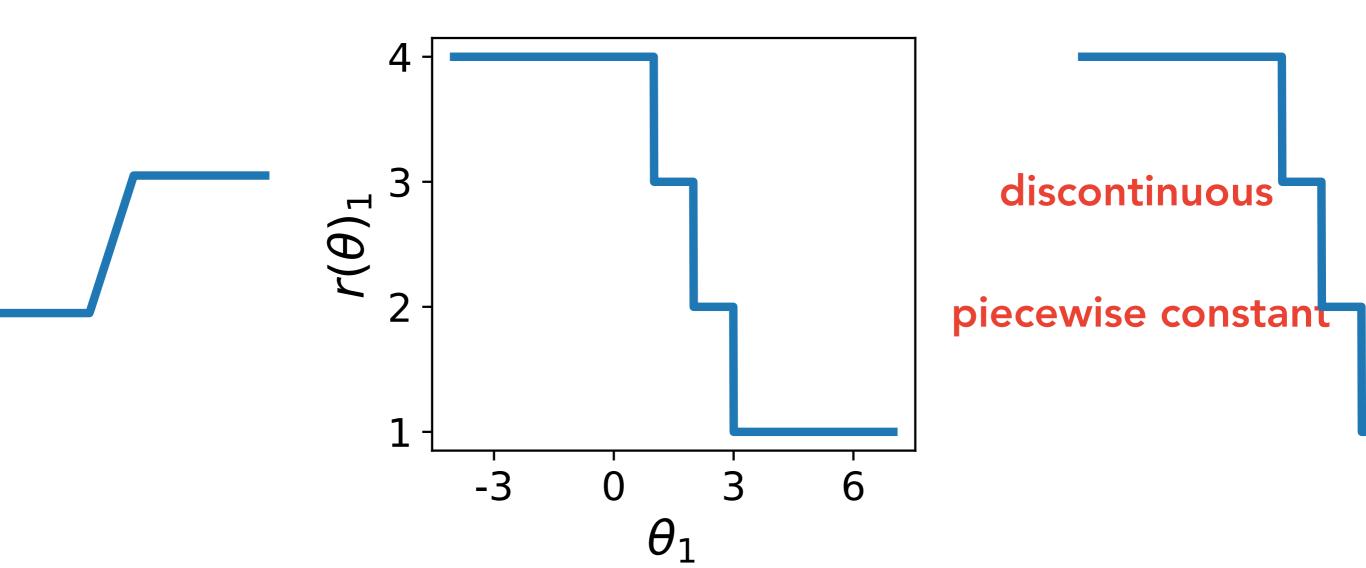
Ranks $r(\theta) \triangleq \sigma^{-1}(\theta)$

 $\theta_1 \quad \theta_3 \quad \theta_4 \quad \theta_2$

Ranks $r(\theta) \triangleq \sigma^{-1}(\theta) = (4,1,3,2)$



Ranks
$$r(\theta) \triangleq \sigma^{-1}(\theta) = (4,1,3,2)$$



Soft ranks : differentiable proxies to "hard" ranks

Soft ranks : differentiable proxies to "hard" ranks

• Random perturbation technique to compute expected ranks in O(n³) time [Taylor et al., 2008]

Soft ranks : differentiable proxies to "hard" ranks

• Random perturbation technique to compute expected ranks in O(n³) time [Taylor et al., 2008]

• Using pairwise comparisons in O(n²) time [Qin et al., 2010] $r_i(\theta) \triangleq 1 + \sum_{i \neq j} \mathbf{1}[\theta_i < \theta_j]$

Soft ranks : differentiable proxies to "hard" ranks

- Random perturbation technique to compute expected ranks in O(n³) time [Taylor et al., 2008]
- Using pairwise comparisons in O(n²) time [Oin et al., 2010]

$$r_i(\theta) \triangleq 1 + \sum_{i \neq j} \mathbf{1}[\theta_i < \theta_j]$$

• Regularized optimal transport approach and Sinkhorn in O(T n²) time [Cuturi et al., 2019]

Soft ranks : differentiable proxies to "hard" ranks

• Random perturbation technique to compute expected ranks in O(n³) time [Taylor et al., 2008]

• Using pairwise comparisons in O(n²) time [Oin et al., 2010]

$$r_i(\theta) \triangleq 1 + \sum_{i \neq j} \mathbf{1}[\theta_i < \theta_j]$$

• Regularized optimal transport approach and Sinkhorn in O(T n²) time [Cuturi et al., 2019]

None of these works achieves O(n log n) complexity

Proposed method

Experimental results

• Differentiable (soft) relaxations of $s(\theta)$ and $r(\theta)$

- Differentiable (soft) relaxations of $s(\theta)$ and $r(\theta)$
- Two formulations: **L2** and Entropy regularised

- Differentiable (soft) relaxations of $s(\theta)$ and $r(\theta)$
- Two formulations: **L2** and Entropy regularised
- "Convexification" effect

- Differentiable (soft) relaxations of $s(\theta)$ and $r(\theta)$
- Two formulations: **L2** and Entropy regularised
- "Convexification" effect
- Exact computation in O(n log n) time (forward pass)

- Differentiable (soft) relaxations of $s(\theta)$ and $r(\theta)$
- Two formulations: **L2** and Entropy regularised
- "Convexification" effect
- Exact computation in O(n log n) time (forward pass)
- Exact multiplication with the Jacobian in O(n) time without unrolling (backward pass)

1. Express $s(\theta)$ and $r(\theta)$ as **linear programs** (LP) over convex polytopes

- 1. Express $s(\theta)$ and $r(\theta)$ as **linear programs** (LP) over convex polytopes
- → Turn algorithmic function into an optimization problem

- 1. Express $s(\theta)$ and $r(\theta)$ as **linear programs** (LP) over convex polytopes
- → Turn algorithmic function into an optimization problem
- 2. Introduce **regularization** in the LP

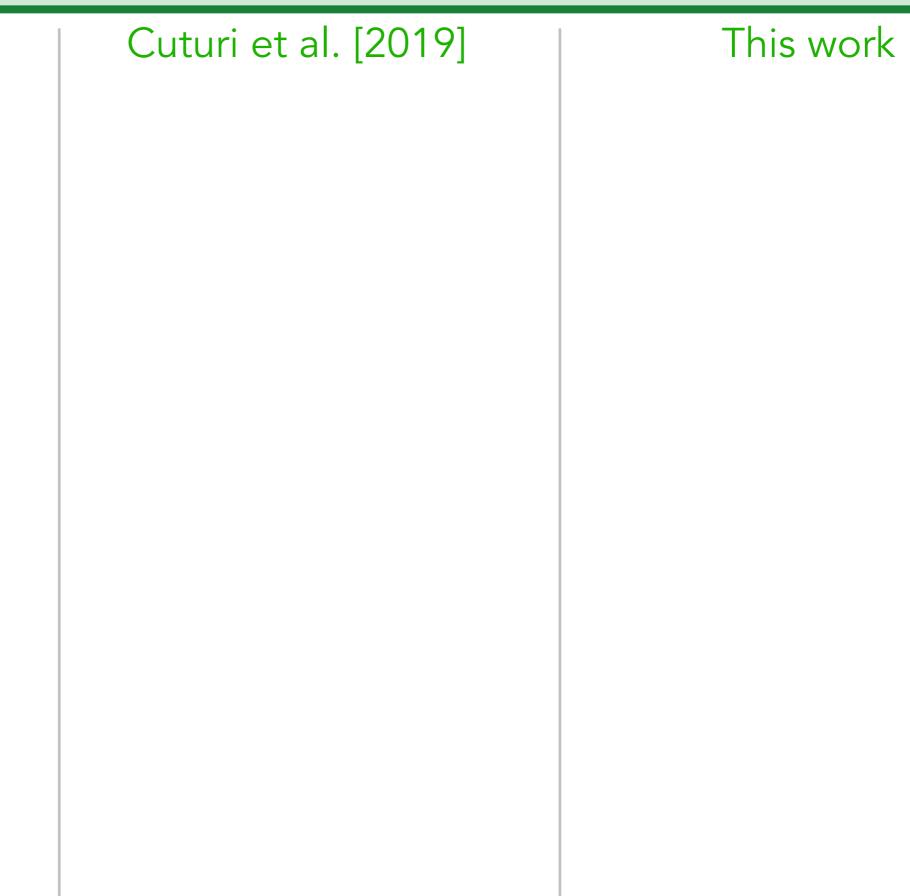
- 1. Express $s(\theta)$ and $r(\theta)$ as **linear programs** (LP) over convex polytopes
- → Turn algorithmic function into an optimization problem
- 2. Introduce **regularization** in the LP
- → Turn LP into a projection onto convex polytopes

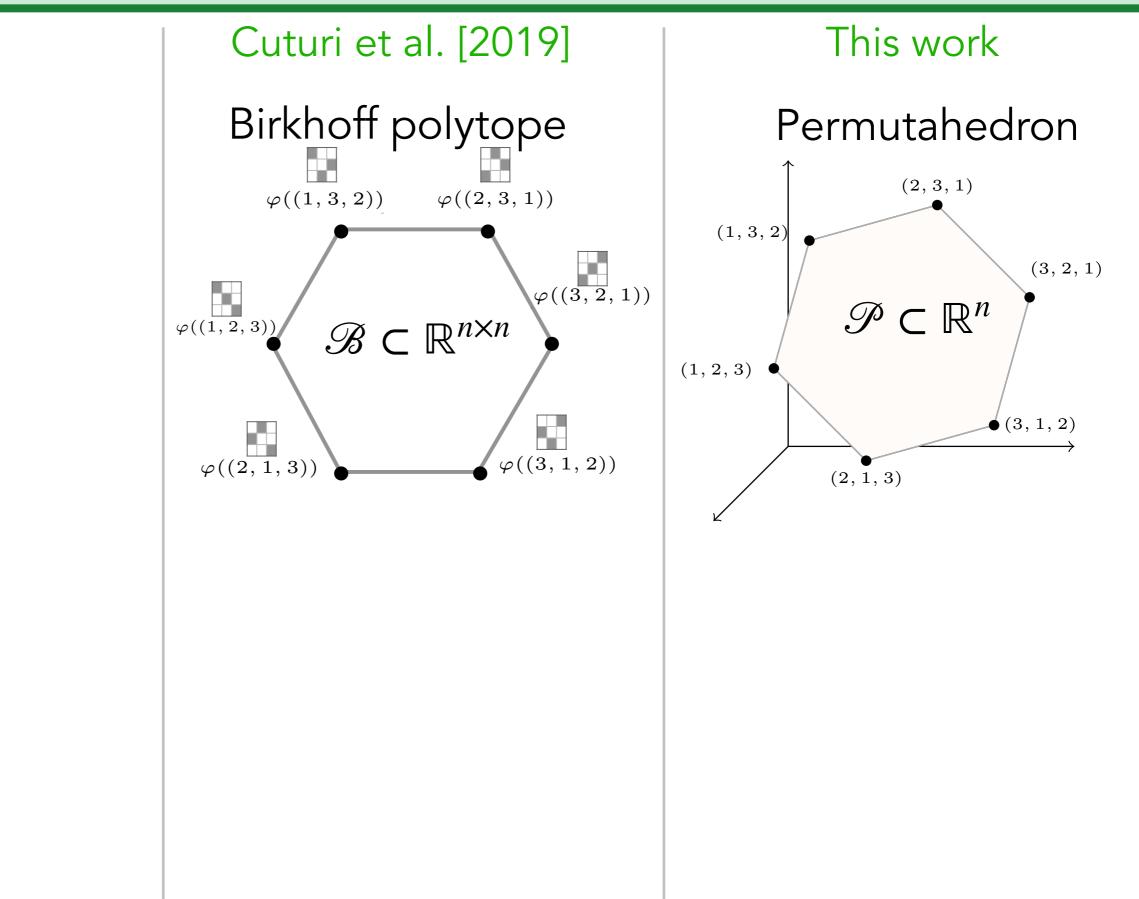
- 1. Express $s(\theta)$ and $r(\theta)$ as **linear programs** (LP) over convex polytopes
- → Turn algorithmic function into an optimization problem
- 2. Introduce **regularization** in the LP
- → Turn LP into a projection onto convex polytopes
- 3. Derive algorithm for **computing** the projection

- 1. Express $s(\theta)$ and $r(\theta)$ as **linear programs** (LP) over convex polytopes
- → Turn algorithmic function into an optimization problem
- 2. Introduce **regularization** in the LP
- → Turn LP into a projection onto convex polytopes
- 3. Derive algorithm for **computing** the projection
- ightarrow Ideally, the projection shoud be computable in the same cost as the original function...

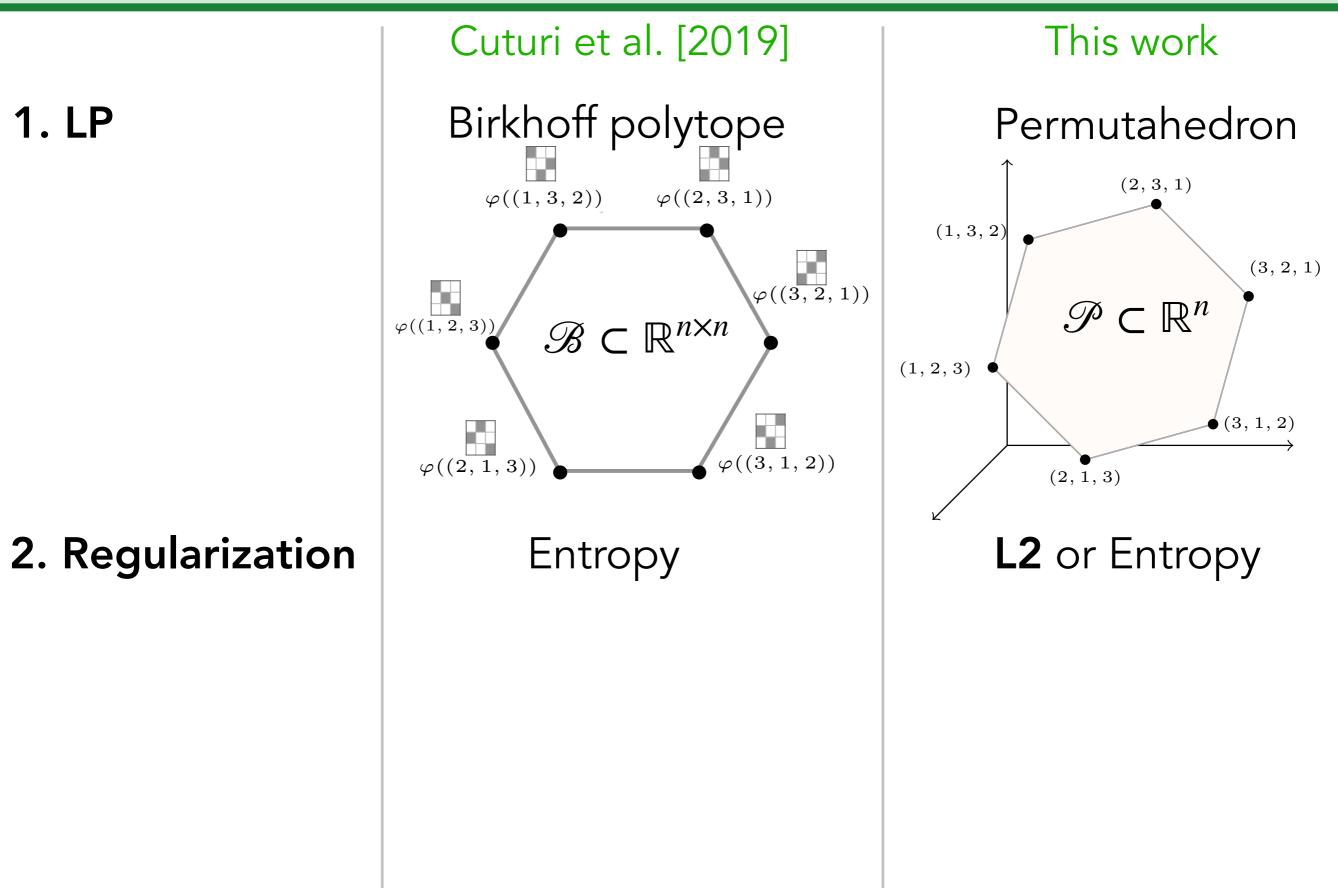
- 1. Express $s(\theta)$ and $r(\theta)$ as **linear programs** (LP) over convex polytopes
- → Turn algorithmic function into an optimization problem
- 2. Introduce **regularization** in the LP
- → Turn LP into a projection onto convex polytopes
- 3. Derive algorithm for **computing** the projection
- ightarrow Ideally, the projection shoud be computable in the same cost as the original function...
- 4. Derive algorithm for **differentiating** the projection

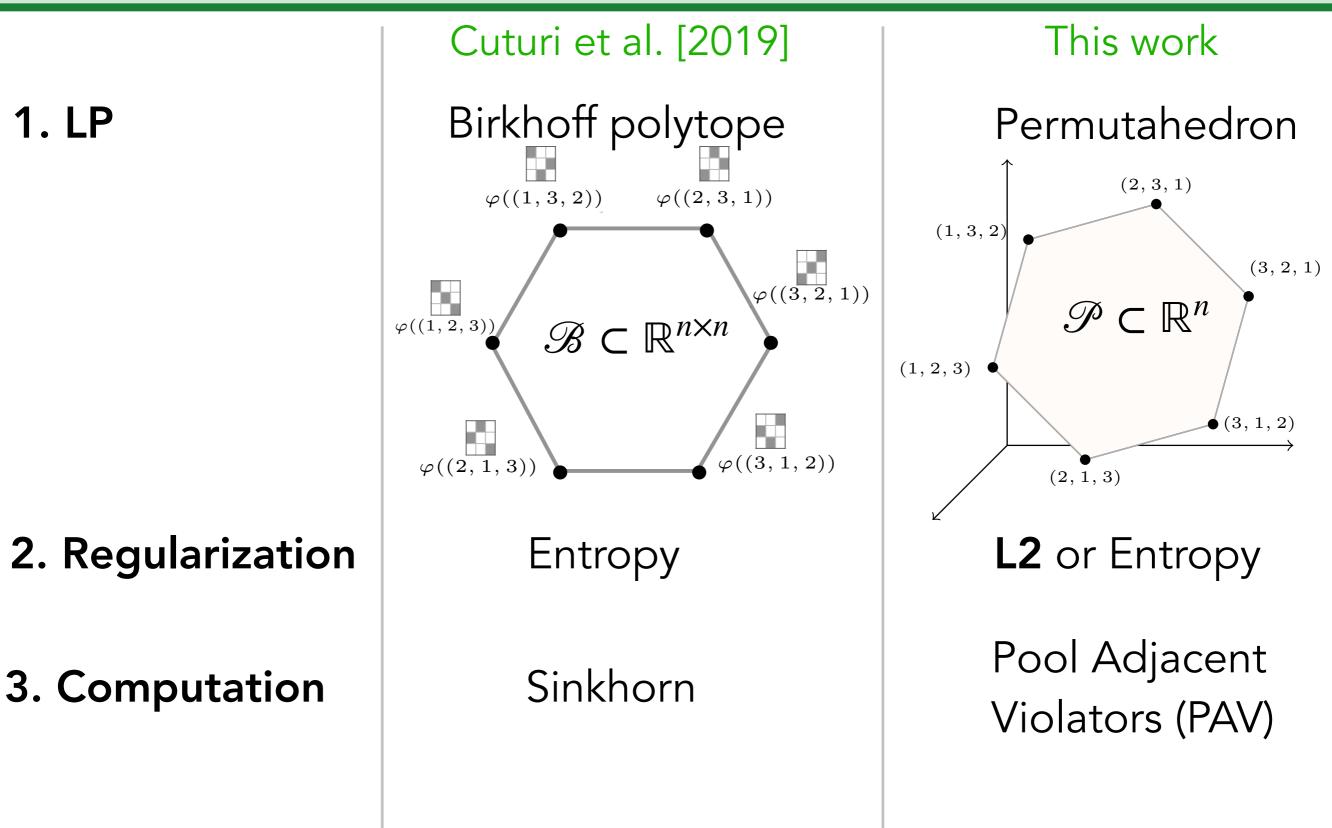
- 1. Express $s(\theta)$ and $r(\theta)$ as **linear programs** (LP) over convex polytopes
- → Turn algorithmic function into an optimization problem
- 2. Introduce **regularization** in the LP
- → Turn LP into a projection onto convex polytopes
- 3. Derive algorithm for **computing** the projection
- ightarrow Ideally, the projection shoud be computable in the same cost as the original function...
- 4. Derive algorithm for **differentiating** the projection
- → Could be challenging (argmin differentiation problem)

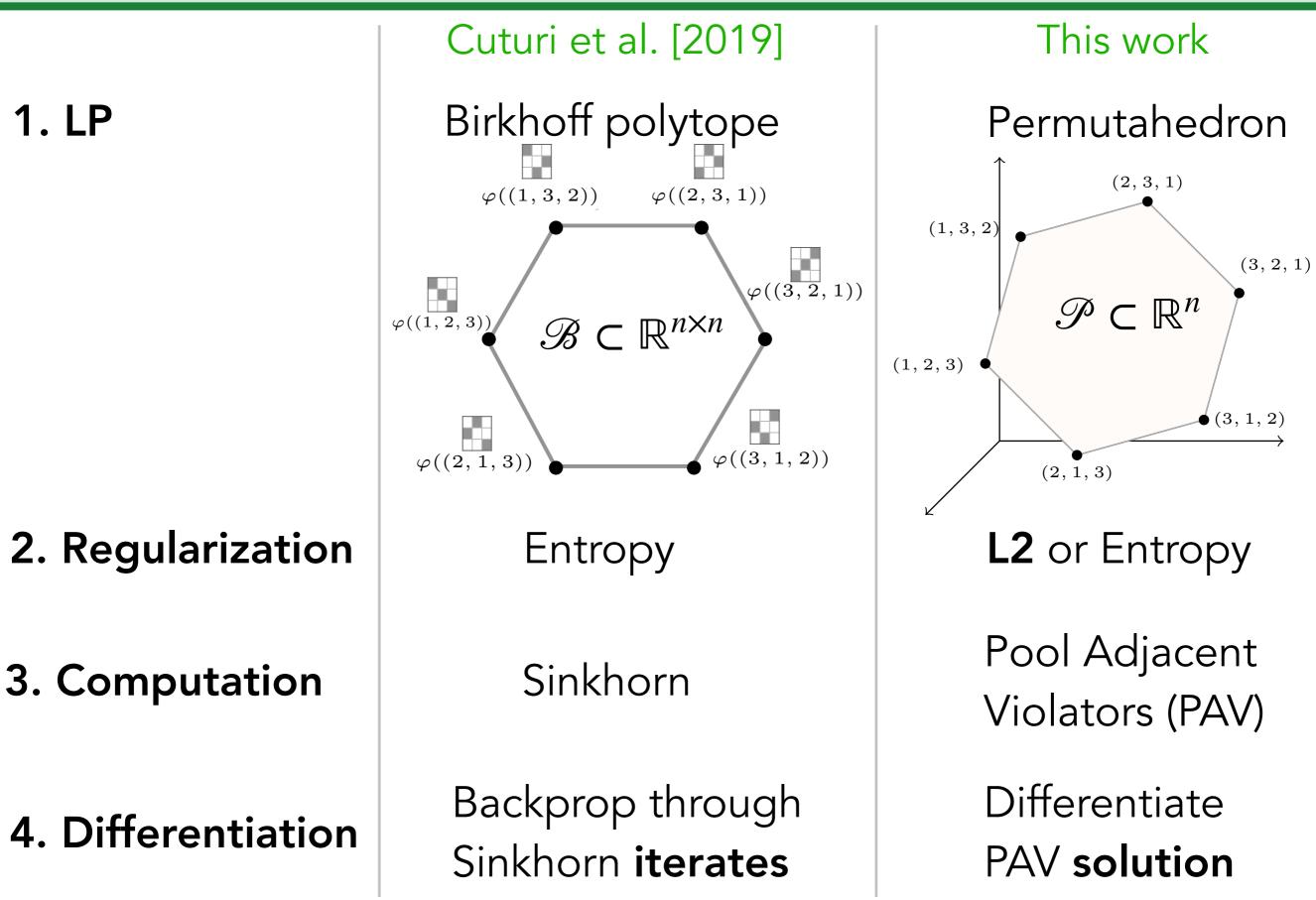




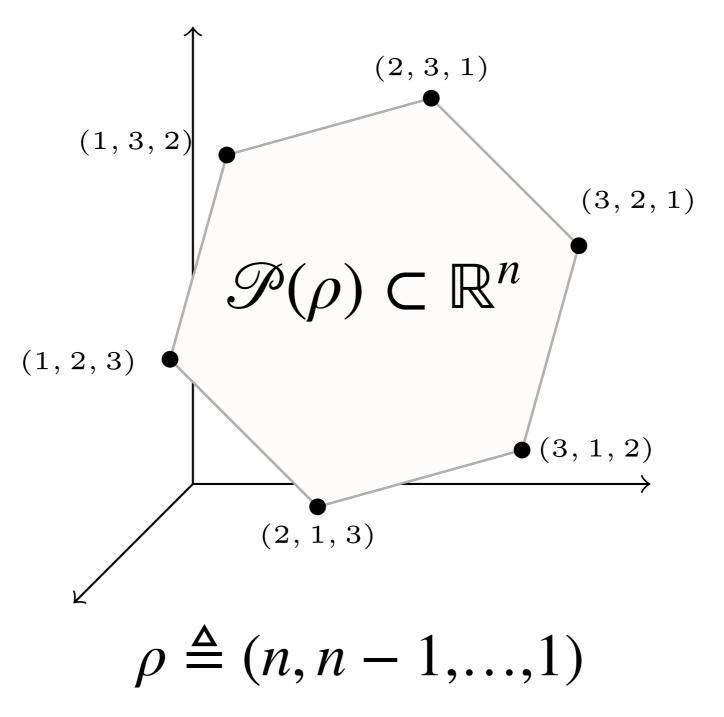
1. LP





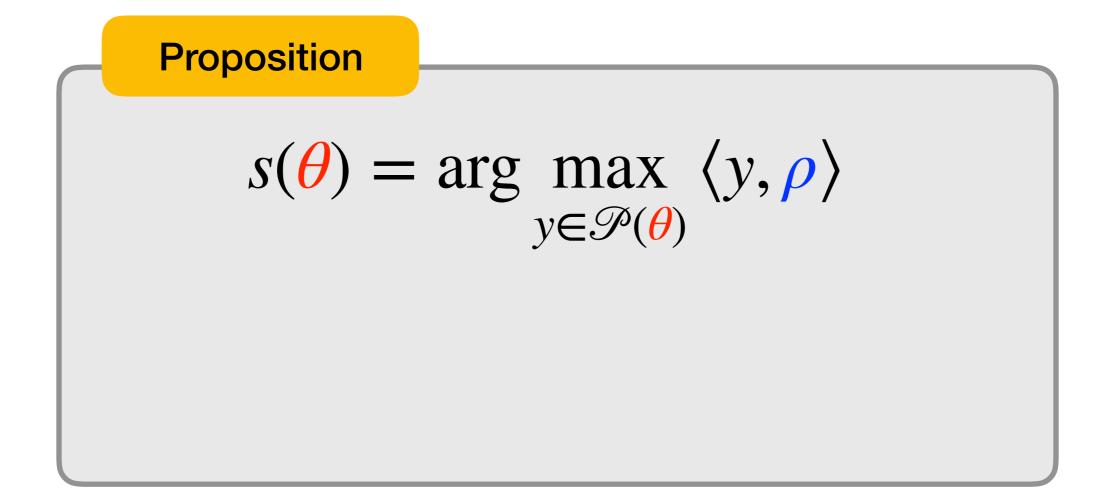


Permutahedron



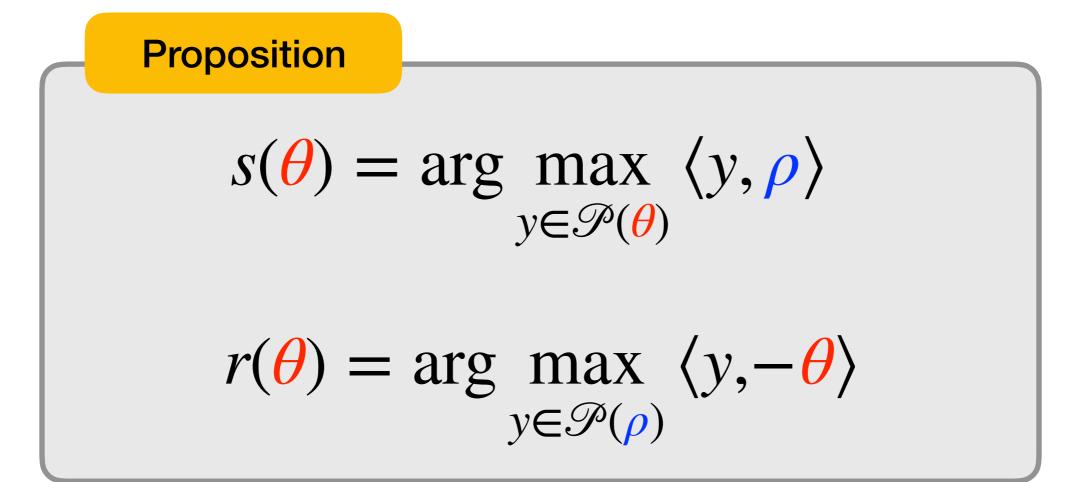
Step 1: linear programming formulations

Step 1: linear programming formulations



$$\rho \triangleq (n, n-1, \dots, 1)$$

Step 1: linear programming formulations



$$\rho \triangleq (n, n-1, \dots, 1)$$

 $\rho_n > \rho_{n-1} > \dots > 1 \Rightarrow \sigma(\theta) = \arg \max \langle \theta_{\sigma}, \rho \rangle$ $\sigma \in \Sigma$

 $\rho_n > \rho_{n-1} > \dots > 1 \Rightarrow \sigma(\theta) = \arg \max(\theta_{\sigma}, \rho)$ $\sigma \in \Sigma$

 $s(\theta) \triangleq \theta_{\sigma(\theta)}$

 $\rho_n > \rho_{n-1} > \dots > 1 \Rightarrow \sigma(\theta) = \arg \max(\theta_{\sigma}, \rho)$ $\sigma \in \Sigma$

 $s(\theta) \triangleq \theta_{\sigma(\theta)}$ $= \arg \max_{\theta_{\sigma}: \ \sigma \in \Sigma} \langle \theta_{\sigma}, \rho \rangle$

 $\rho_n > \rho_{n-1} > \ldots > 1 \Rightarrow \sigma(\theta) = \arg \max_{\sigma \in \Sigma} \langle \theta_{\sigma}, \rho \rangle$

$$s(\theta) \triangleq \theta_{\sigma(\theta)}$$

= arg max $\langle \theta_{\sigma}, \rho \rangle$
 $\theta_{\sigma}: \sigma \in \Sigma$ $\langle \theta_{\sigma}, \rho \rangle$
= arg max $\langle y, \rho \rangle$
 $y \in \Sigma(\theta)$

 $\rho_n > \rho_{n-1} > \dots > 1 \Rightarrow \sigma(\theta) = \arg \max(\theta_{\sigma}, \rho)$ $\sigma \in \Sigma$

$$s(\theta) \triangleq \theta_{\sigma(\theta)}$$

= arg max $\langle \theta_{\sigma}, \rho$
 $\theta_{\sigma}: \sigma \in \Sigma$ $\langle \theta_{\sigma}, \rho$
= arg max $\langle y, \rho \rangle$
 $y \in \Sigma(\theta)$

 $= \arg \max_{y \in \mathscr{P}(\theta)} \langle y, \rho \rangle$

Quadratic regularization $Q(y) \triangleq \frac{1}{2} ||y||^2$

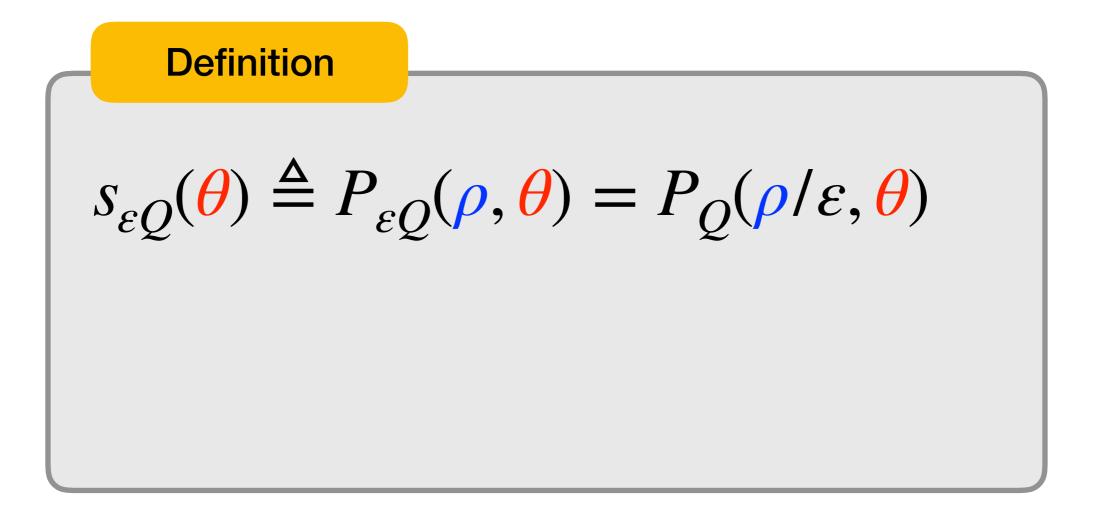
$$P_Q(z, w) \triangleq \arg \max_{y \in \mathscr{P}(w)} \langle y, z \rangle - Q(y)$$

Quadratic regularization
$$Q(y) \triangleq \frac{1}{2} ||y||^2$$

$$P_{Q}(z,w) \triangleq \arg \max_{y \in \mathscr{P}(w)} \langle y, z \rangle - Q(y) = \arg \min_{y \in \mathscr{P}(w)} \|y - z\|^{2}$$

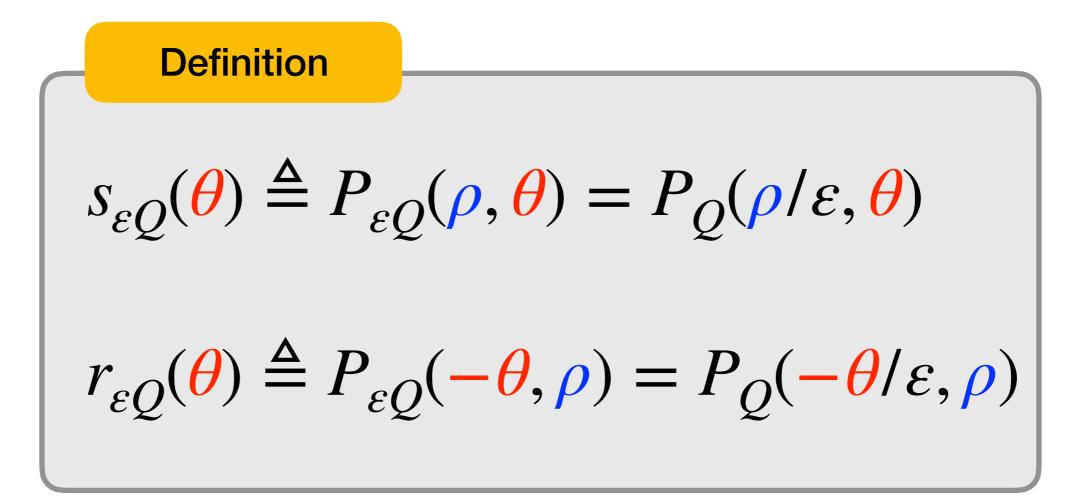
Quadratic regularization
$$Q(y) \triangleq \frac{1}{2} ||y||^2$$

$$P_{Q}(z,w) \triangleq \arg \max_{y \in \mathscr{P}(w)} \langle y, z \rangle - Q(y) = \arg \min_{y \in \mathscr{P}(w)} \|y - z\|^{2}$$

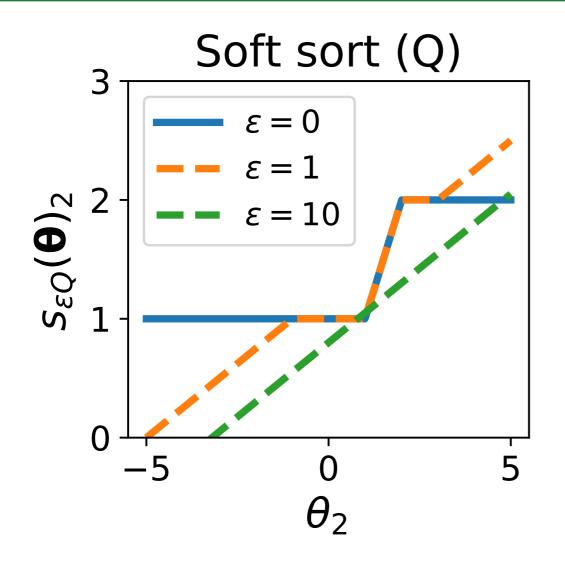


Quadratic regularization
$$Q(y) \triangleq \frac{1}{2} ||y||^2$$

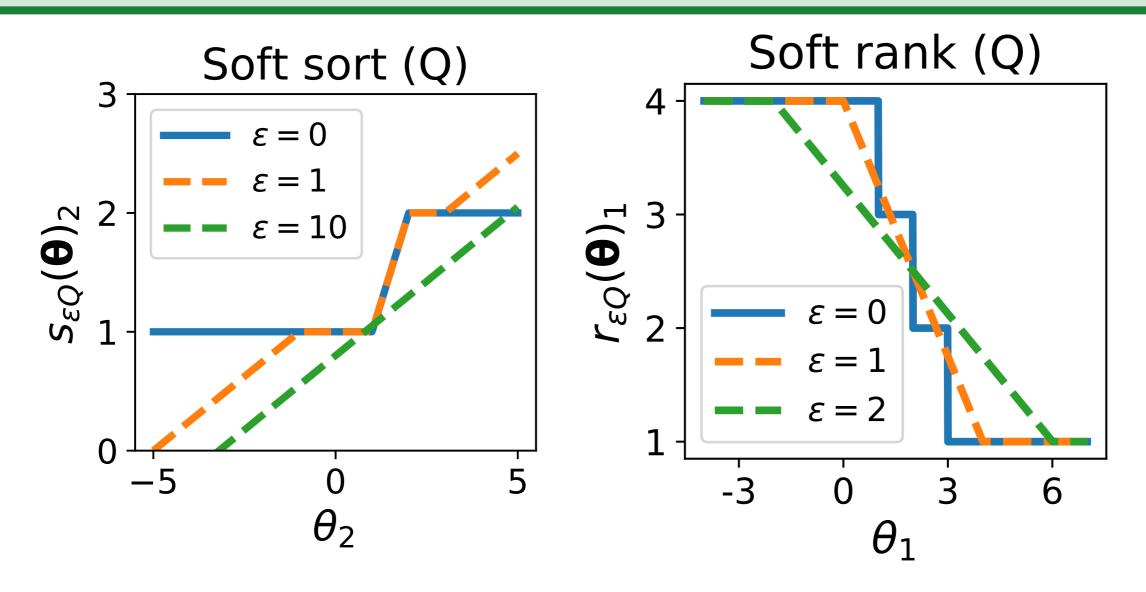
$$P_Q(z, w) \triangleq \arg \max_{y \in \mathscr{P}(w)} \langle y, z \rangle - Q(y) = \arg \min_{y \in \mathscr{P}(w)} ||y - z||^2$$



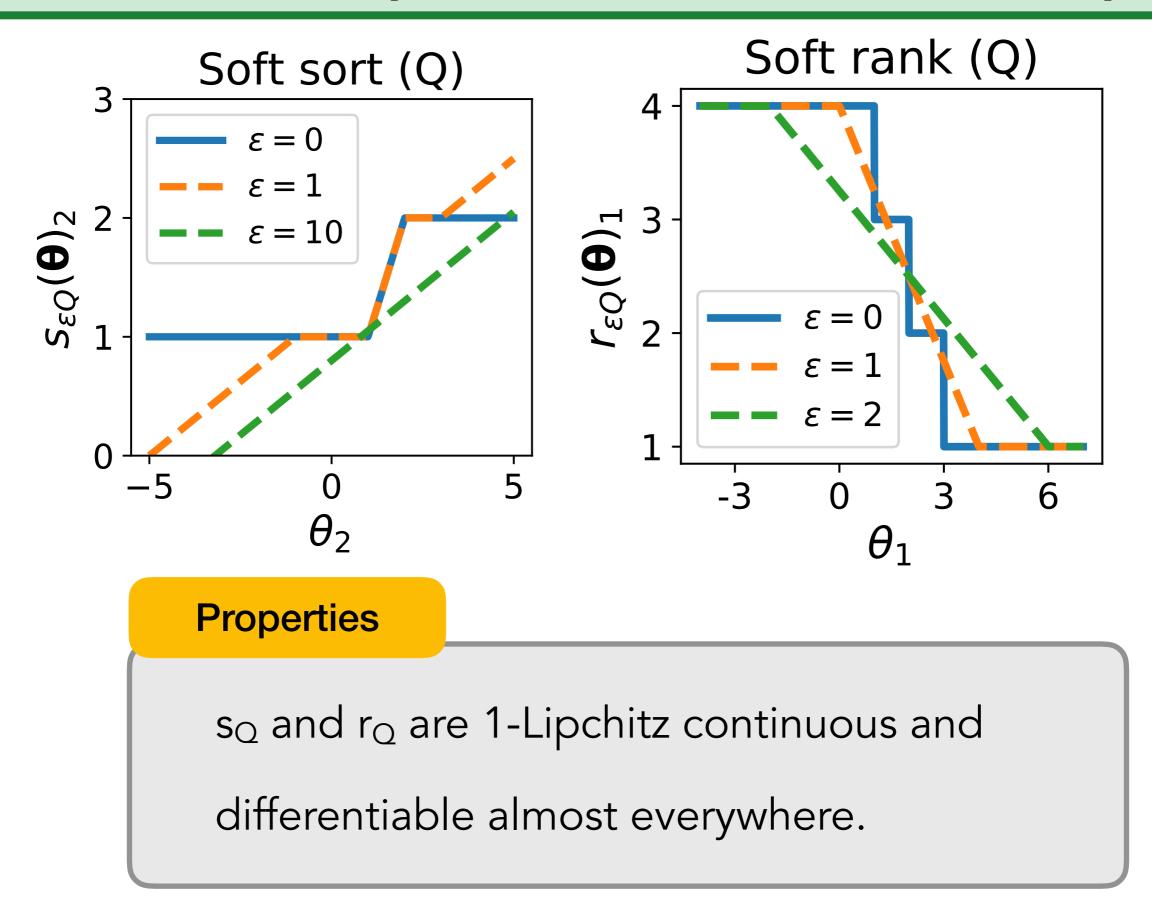
Continuity and differentiability

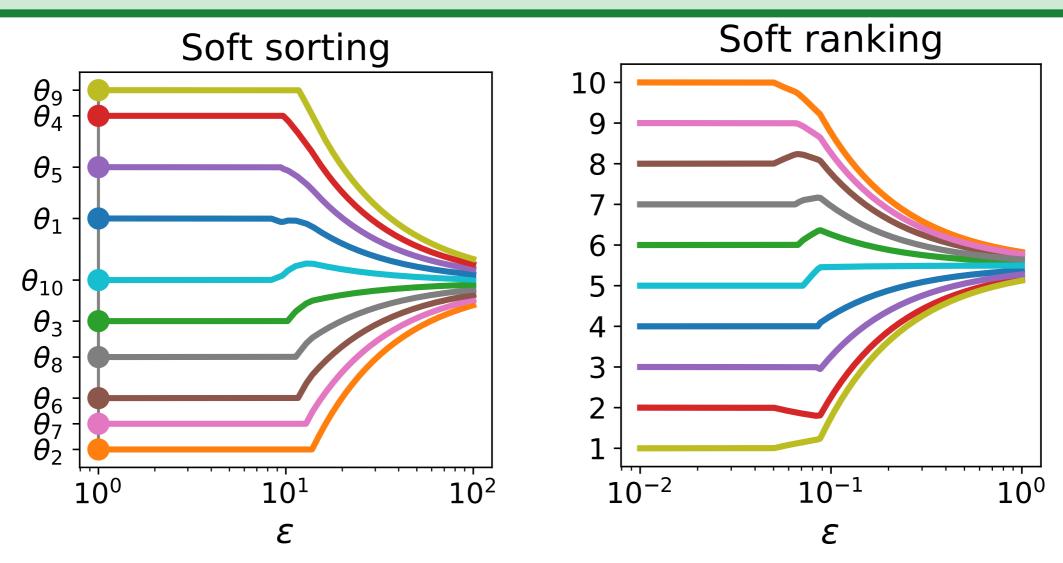


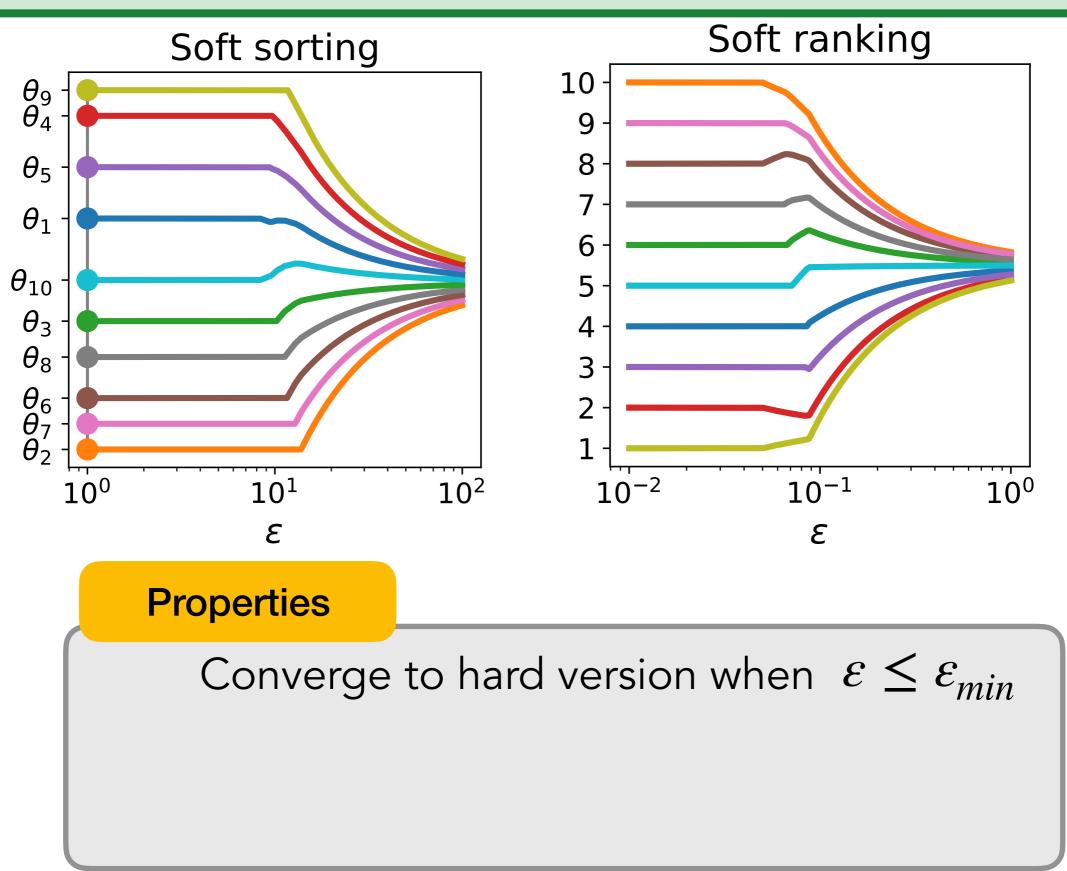
Continuity and differentiability

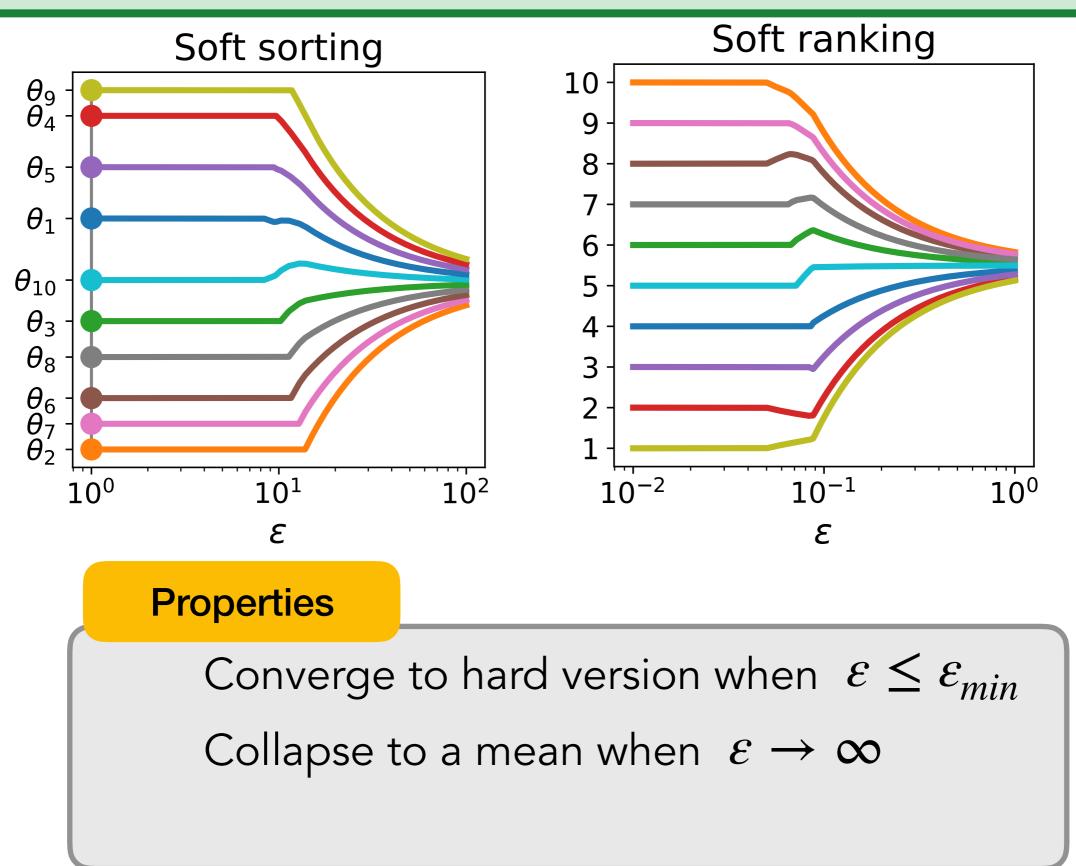


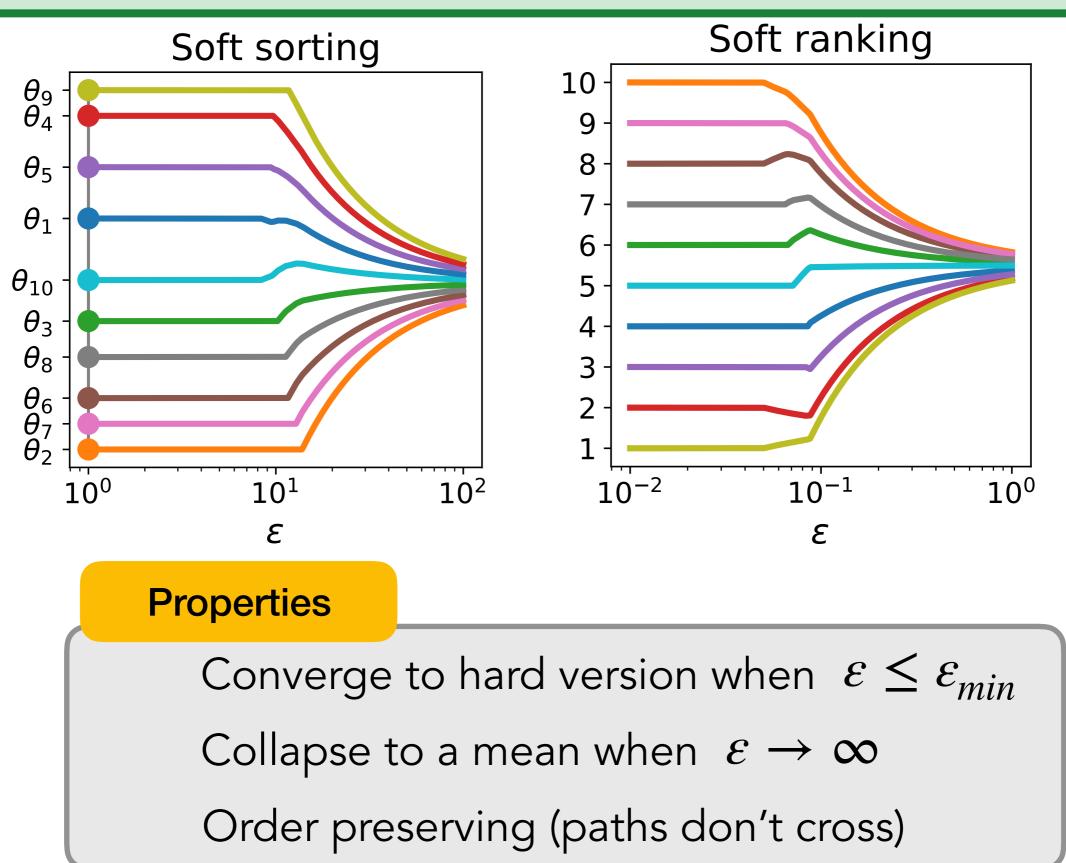
Continuity and differentiability



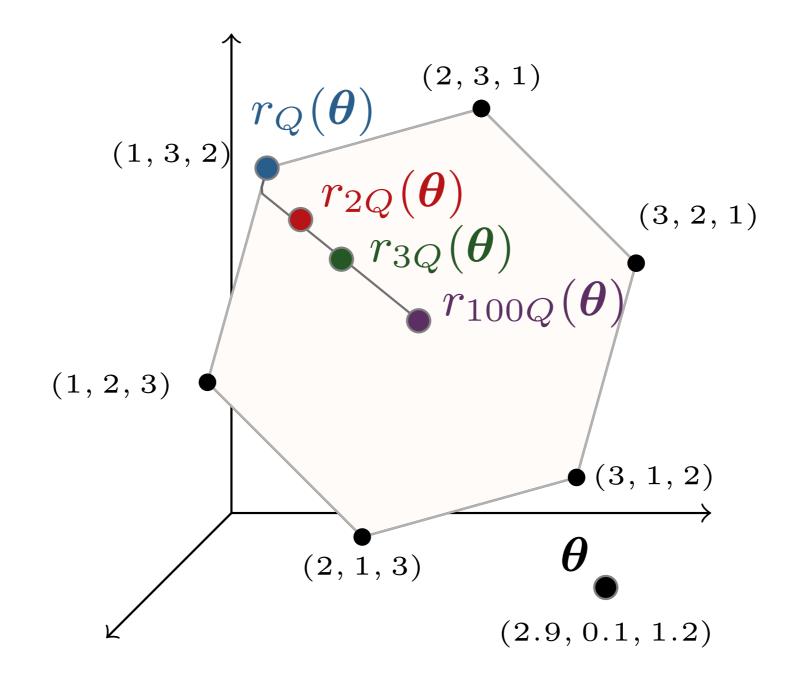








Regularization path



Collapse to a mean(ρ)**1** when $\varepsilon \to \infty$

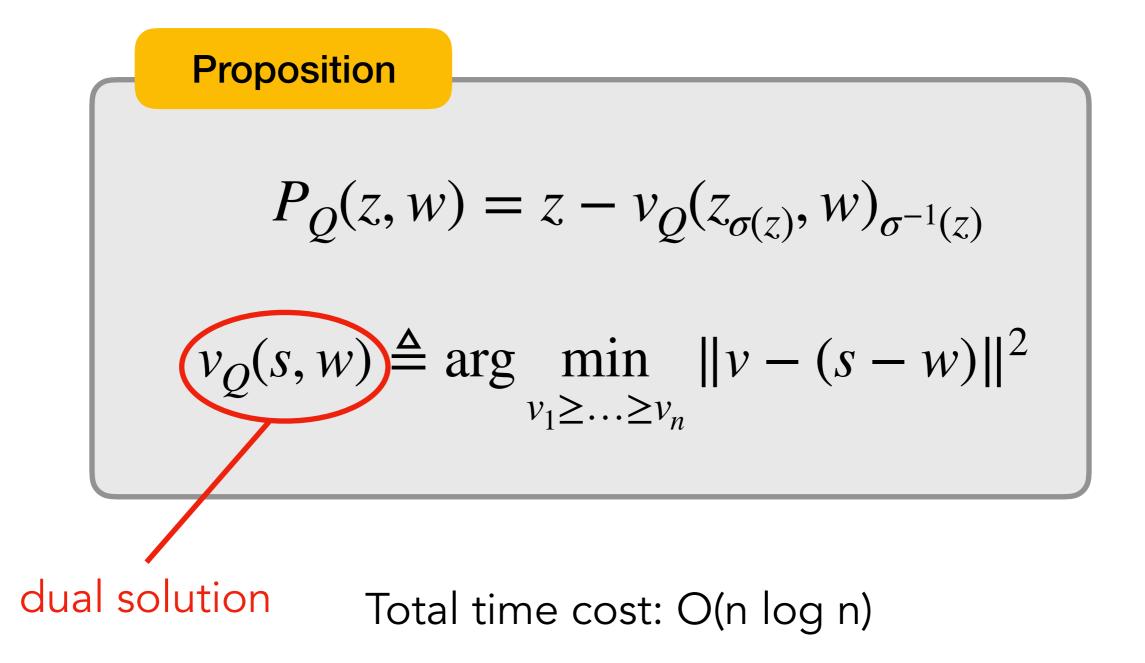
Reduction to isotonic regression

Proposition $P_Q(z, w) = z - v_Q(z_{\sigma(z)}, w)_{\sigma^{-1}(z)}$ $v_Q(s, w) \triangleq \arg \min_{v_1 \ge \dots \ge v_n} \|v - (s - w)\|^2$

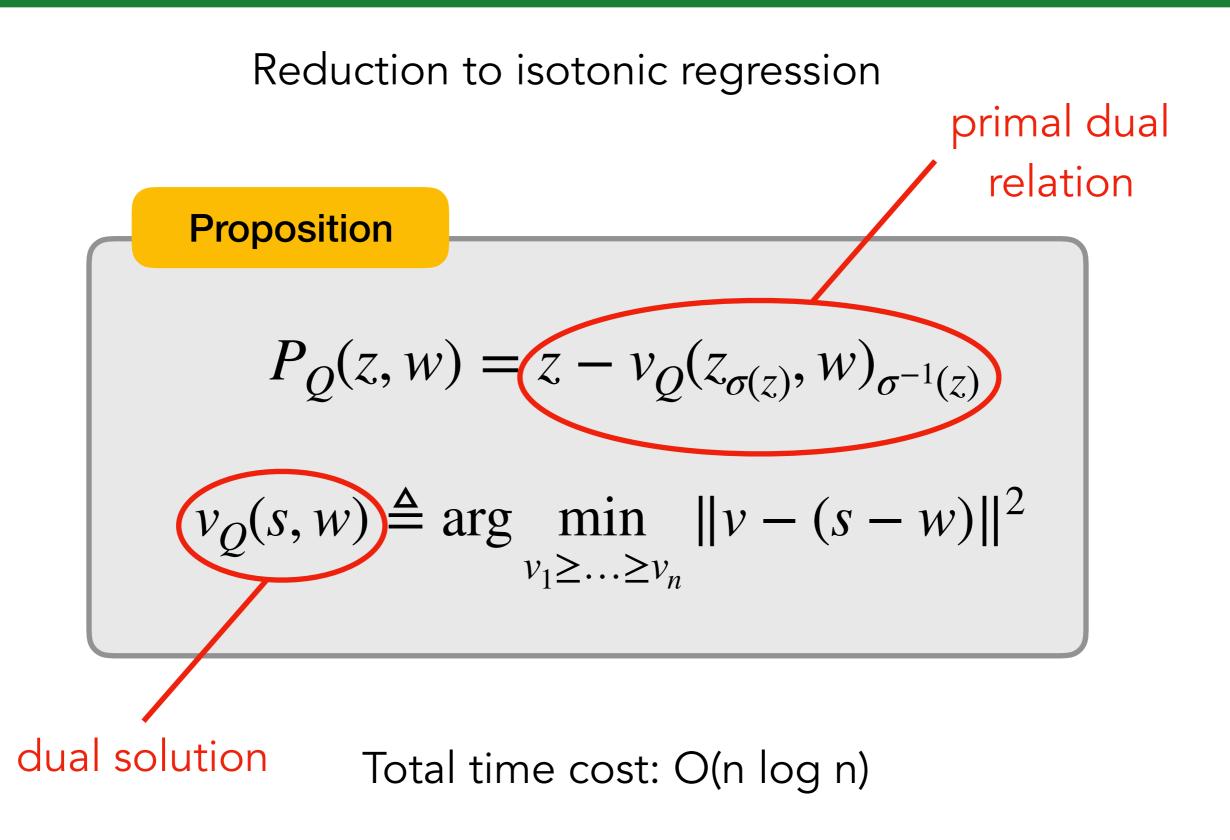
Total time cost: O(n log n)

e.g. [Negrignho & Martins, 2014; Lim & Wright 2016]

Reduction to isotonic regression



e.g. [Negrignho & Martins, 2014; Lim & Wright 2016]



e.g. [Negrignho & Martins, 2014; Lim & Wright 2016]

Boils down to solving $v^* = \arg \min_{v_1 \ge \dots \ge v_n} \|v - u\|^2$ u = s - w

Boils down to solving $v^* = \arg \min_{v_1 \ge \dots \ge v_n} ||v - u||^2$ u = s - w

Pool Adjacent Violators (PAV): Finds a partition $\mathscr{B}_1, \ldots, \mathscr{B}_m$ by repeatedly splitting coordinates. The worst-case cost is O(n).

Boils down to solving $v^* = \arg \min_{v_1 \ge \dots \ge v_n} ||v - u||^2$ u = s - w

Pool Adjacent Violators (PAV): Finds a partition $\mathscr{B}_1, \ldots, \mathscr{B}_m$ by repeatedly splitting coordinates. The worst-case cost is O(n).

[Best, 2000]

 \mathcal{U}_{6}

Step 4: Differentiation

See also [Djolonga & Krause, 2017]

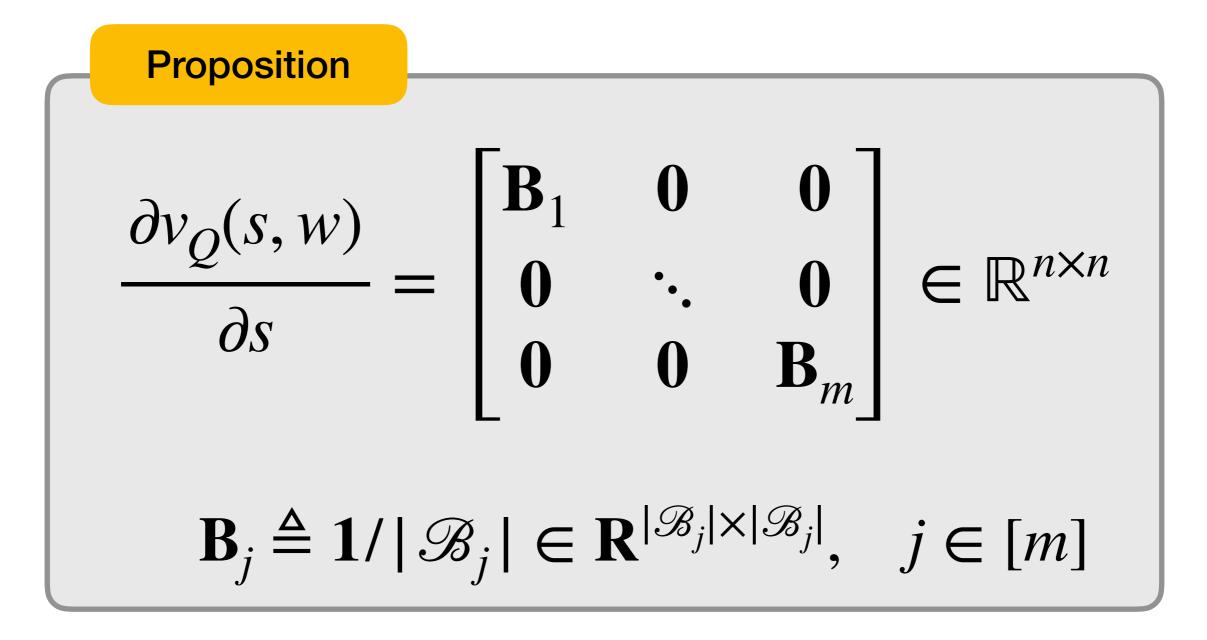
Step 4: Differentiation

Differentiate $v_Q(s, w) = \arg \min_{v_1 \ge \dots \ge v_n} ||v - (s - w)||^2$ w.r.t. s and w

See also [Djolonga & Krause, 2017]

Step 4: Differentiation

Differentiate
$$v_Q(s, w) = \arg \min_{v_1 \ge \dots \ge v_n} \|v - (s - w)\|^2$$
 w.r.t. s and w



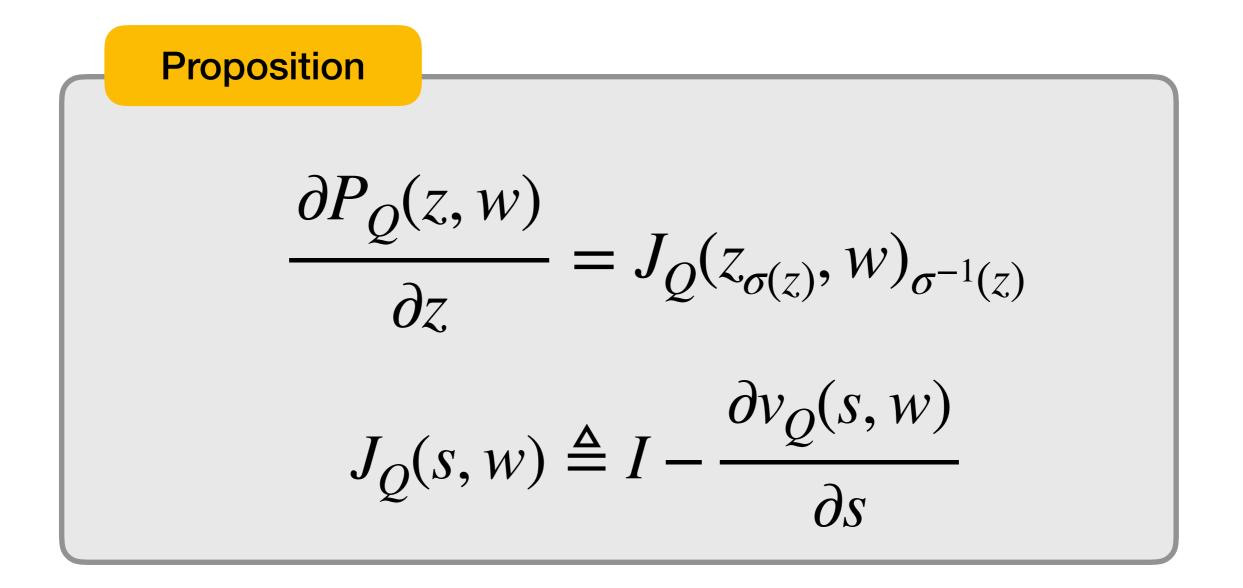
See also [Djolonga & Krause, 2017]

Step 4: Differentiation

Differentiate $P_Q(z, w)$ w.r.t. z and w

Step 4: Differentiation

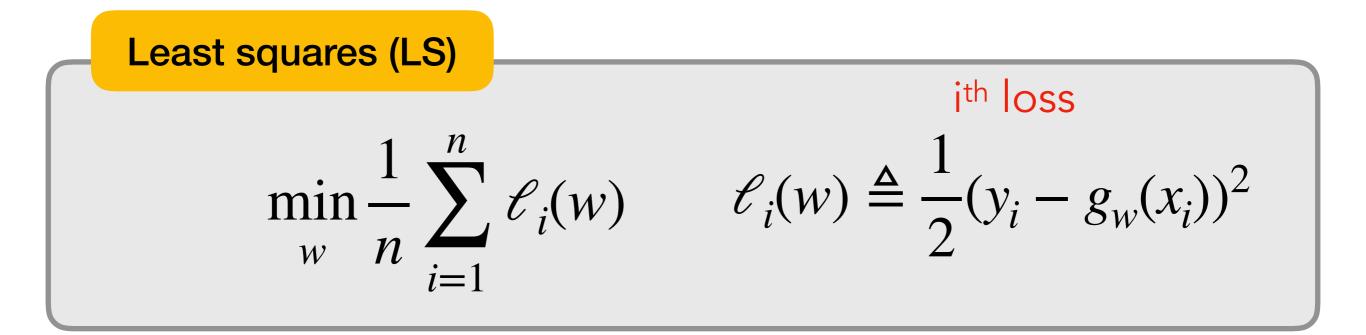
Differentiate
$$P_Q(z, w)$$
 w.r.t. z and w

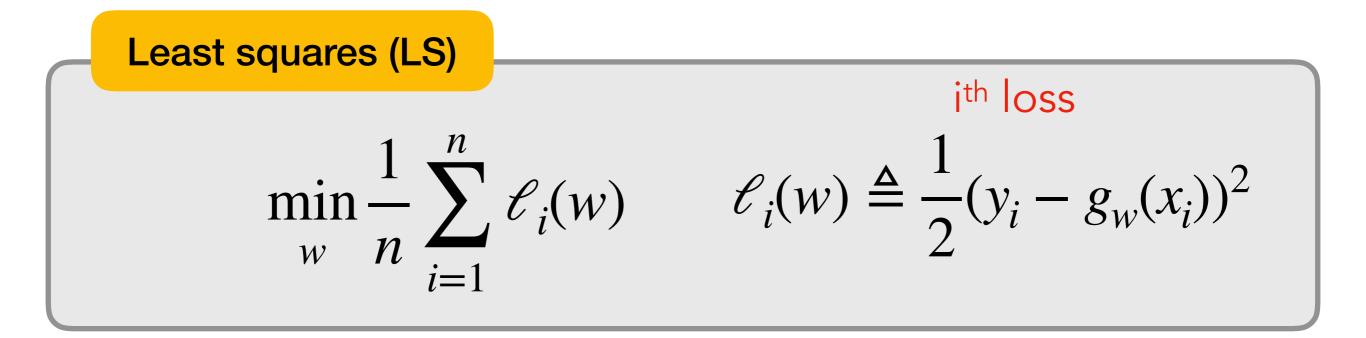


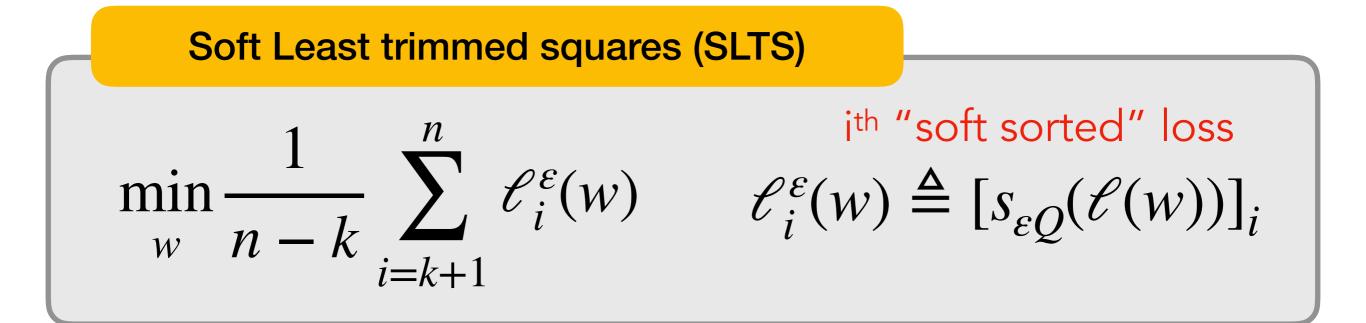
Multiplication with the Jacobian in O(n) time and space (see paper)

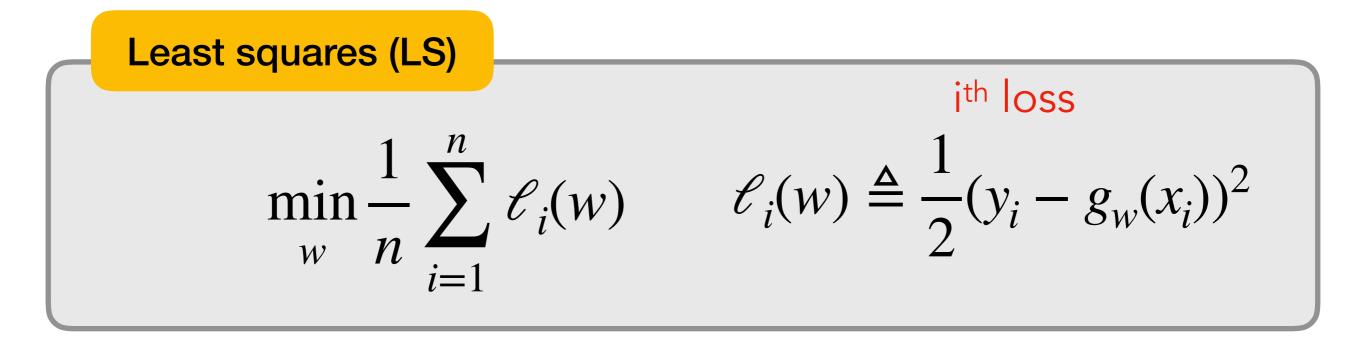
Proposed method

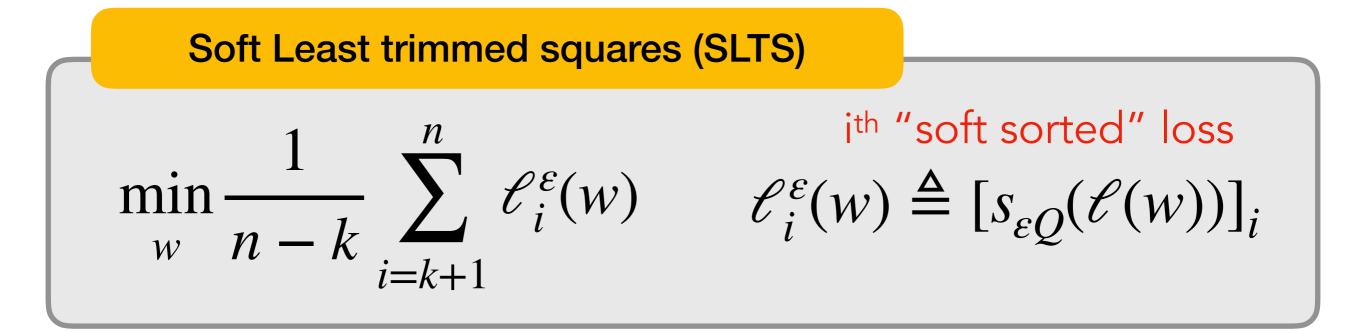
Experimental results



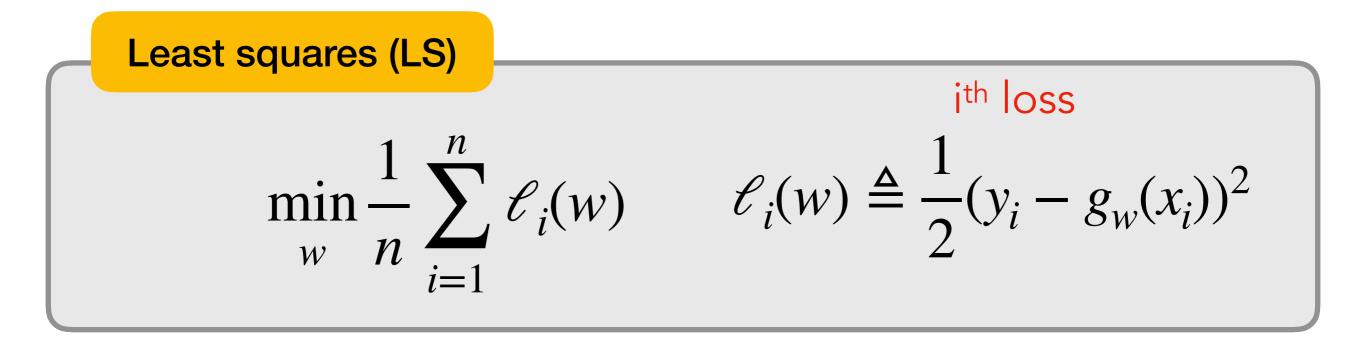


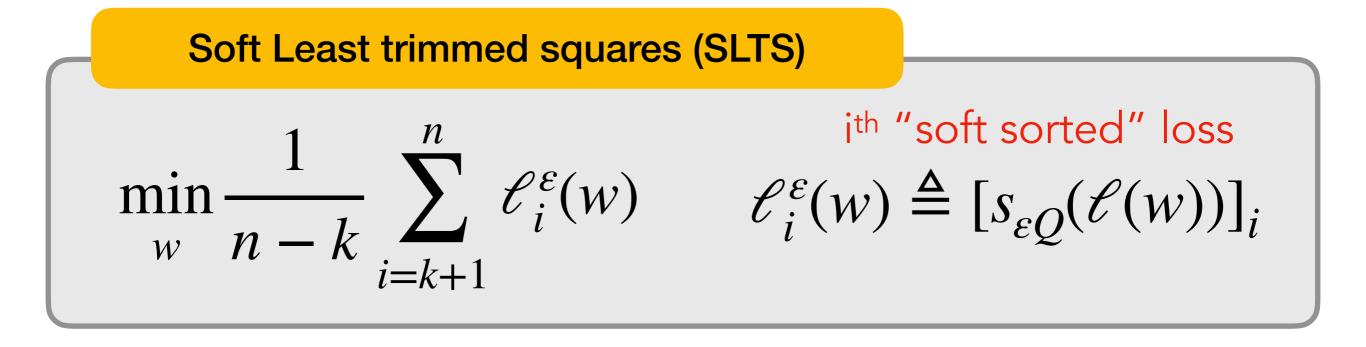




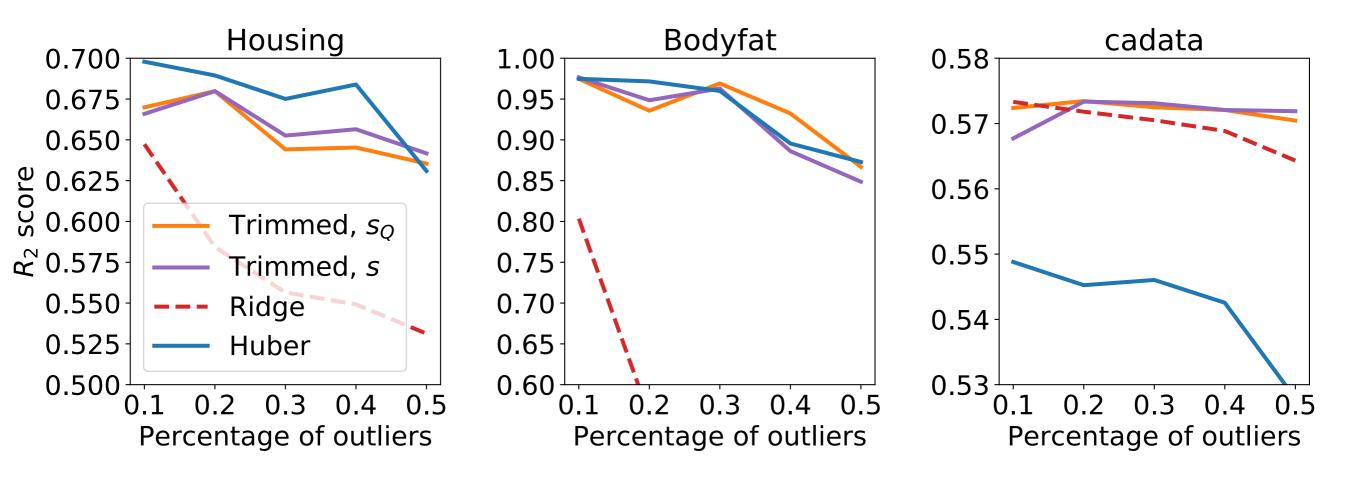


$$\varepsilon \to 0 \quad SLTS \to LTS$$





 $\varepsilon \to 0 \quad SLTS \to LTS \quad \varepsilon \to \infty \quad SLTS \to LS$



```
Evaluation: 10-fold CV
```

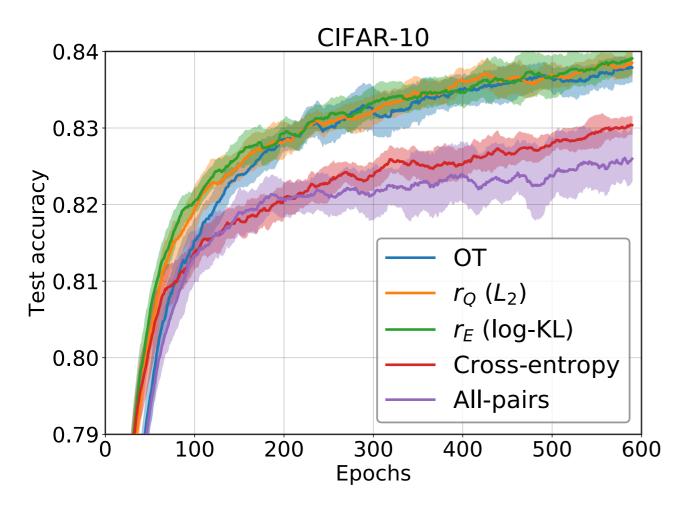
Hyper-parameter selection: 5-fold CV

Top-k classification

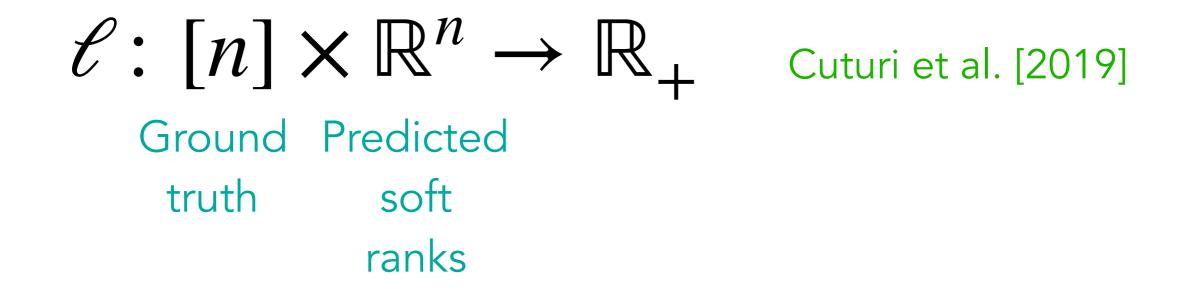
 $\ell: [n] \times \mathbb{R}^n \to \mathbb{R}_+$ Cuturi et al. [2019] Ground Predicted truth soft ranks

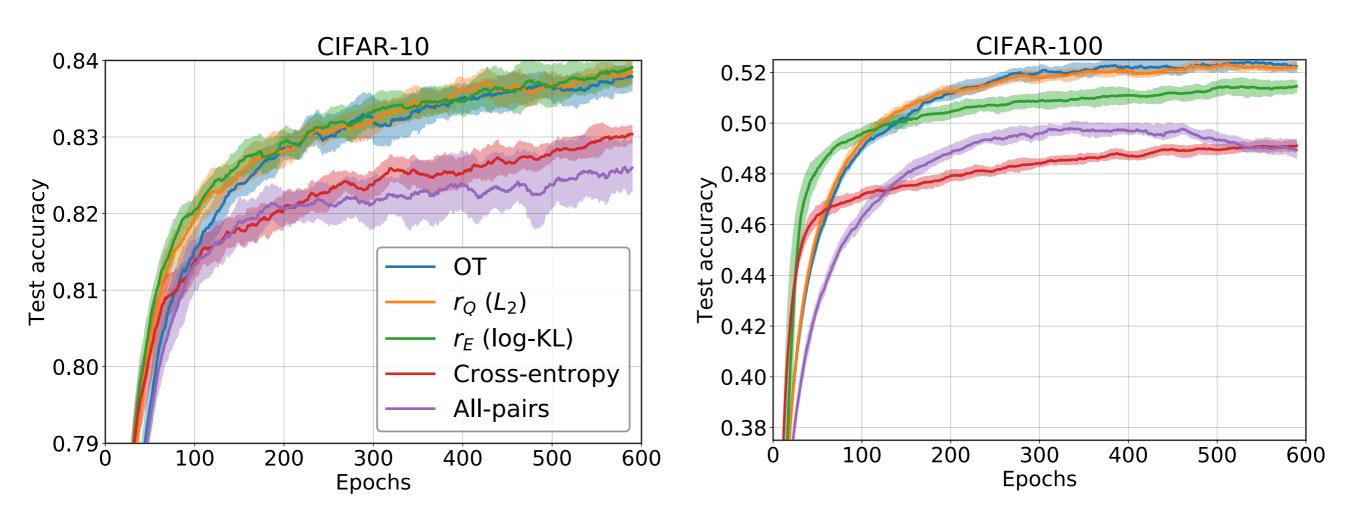
Top-k classification

 $\ell: [n] \times \mathbb{R}^n \to \mathbb{R}_+$ Cuturi et al. [2019] Ground Predicted truth soft ranks

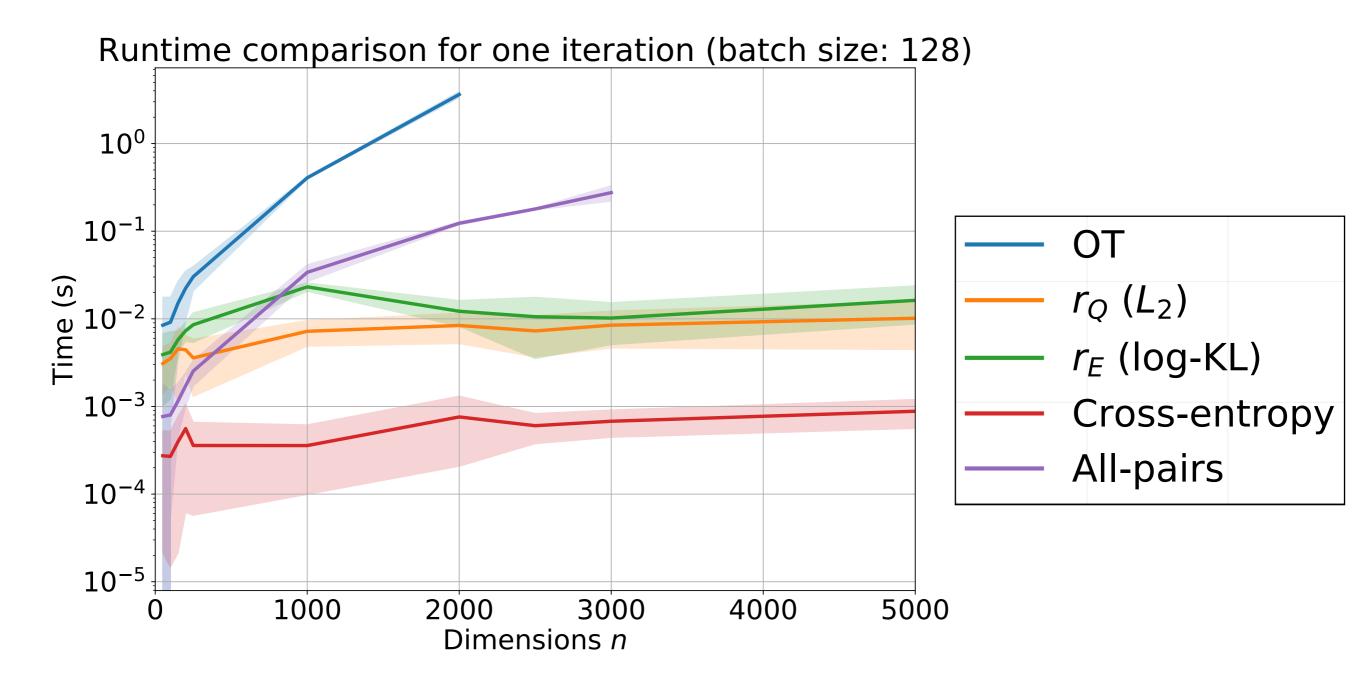


Top-k classification



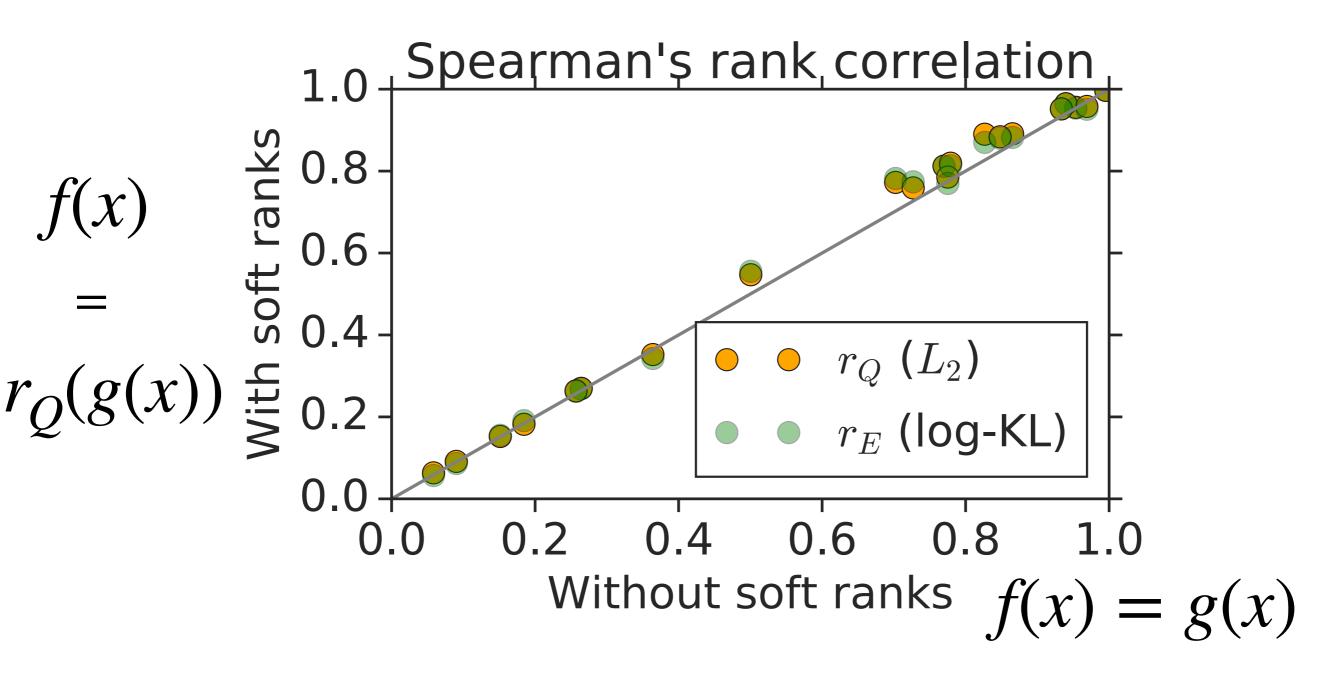


Speed benchmark



Label ranking experiment

$$\mathscr{C}_i \triangleq \frac{1}{2} \|y_i - f(x_i)\|^2 \quad y_i \in \Sigma$$



Comparison on 21 datasets, 5-fold CV

• We proposed sorting and ranking relaxations with O(n log n) computation and O(n) differentiation

- We proposed sorting and ranking relaxations with O(n log n) computation and O(n) differentiation
- Key techniques: projections onto the permutahedron and reduction to isotonic optimization

- We proposed sorting and ranking relaxations with O(n log n) computation and O(n) differentiation
- Key techniques: projections onto the permutahedron and reduction to isotonic optimization
- Applications to least trimmed squares, top-k classification and label ranking

- We proposed sorting and ranking relaxations with O(n log n) computation and O(n) differentiation
- Key techniques: projections onto the permutahedron and reduction to isotonic optimization
- Applications to least trimmed squares, top-k classification and label ranking

Preprint: Fast Differentiable Sorting and Ranking [arXiv:2002.08871]

Code: coming soon!