Smoothing/Regularization Techniques for Probabilistic and Structured Classification

Mathieu Blondel

NTT, CS Laboratories, Kyoto, Japan

2018/6/08

Joint work with Vlad Niculae, Andre Martins, Claire Cardie, Arthur Mensch

1

Outline

- Background: structured prediction
- Regularized prediction functions
- A new family of loss functions
- Generalized entropies, sparsity and separation margins
- Applications and experimental results

Outline

- Background: structured prediction
- Regularized prediction functions
- A new family of loss functions
- Generalized entropies, sparsity and separation margins
- Applications and experimental results

Structured prediction

Goal: predict $\mathbf{y} \in \mathcal{Y}$ from $\mathbf{x} \in \mathcal{X}$

- Both X and Y may be complex structured spaces (sequences, permutations, etc)
- Assumption 1: a function $f_W : \mathcal{X} \to \mathbb{R}^d$ is available. Converts \mathbf{x} into $\boldsymbol{\theta} = f_W(\mathbf{x})$ ("potentials" or "features")
- Assumption 2: $\mathbf{y} \in \mathcal{Y}$ can be represented as a *d*-dimensional binary vector, i.e., $\mathbf{y} \in \{0, 1\}^d$

Maximum a-posteriori (MAP) inference

- The inner product ⟨y, θ⟩ can be thought as the affinity score between x ∈ X and y ∈ Y
- Find the highest-scoring **y**:

$$\hat{m{y}} \in \mathsf{MAP}(m{ heta}) \coloneqq rgmax_{m{y} \in \mathcal{Y}} \langle m{ heta}, m{y}
angle$$

Corresponds to finding the mode of posterior distribution $p(\mathbf{y}|\boldsymbol{\theta}) \propto \exp\langle \mathbf{y}, \boldsymbol{\theta} \rangle$ (Gibbs distribution)

Combinatorial problem: $|\mathcal{Y}|$ potentially exponential in input size

Marginal polytope and marginal inference

- $\operatorname{conv}(\mathcal{Y}) \coloneqq \{\mathbb{E}_{p}[Y] \colon p \in \triangle^{|\mathcal{Y}|}\}$ forms a convex polytope, called the marginal polytope [Wainwright & Jordan '08]
- Marginal inference consists in computing

$$\mathsf{marginals}(oldsymbol{ heta})\coloneqq \mathbb{E}_{oldsymbol{
ho}}[Y]\in\mathsf{conv}(\mathcal{Y})$$

where $p(m{y};m{ heta})\propto \exp\langlem{ heta},m{y}
angle$ is the Gibbs distribution

Examples of structured inference

One-of-k classification

$$\begin{array}{l} \mathsf{MAP:} \ \operatorname*{argmax}_{\boldsymbol{y} \in \mathcal{Y}} \boldsymbol{y} = \operatorname*{argmax}_{i \in [k]} \theta_{i} \\ \mathsf{marginals:} \ \operatorname{exp} \boldsymbol{\theta} \big/ \sum_{i=1}^{k} \theta_{i} \ (\mathsf{softmax}) \end{array}$$

Linear assignment

li

Ι	like	it	
O	Ο	0	cela
\bigcirc	Ο	0	me
0	\bigcirc	0	plai

Y 123 Y 132 Y 213 Y 231 Y 312 Y 321							
I–cela	[1	1	0	0	0	0	1
I-me	0	0	1	1	0	0	l
I–plait	0	0	0	0	1	1	l
ke–cela	0	0	1	0	1	0	l
ike-me	1	0	0	0	0	1	l
ke–plait	0	1	0	1	0	0	l
it–cela	0	0	0	1	0	1	l
it-me	0	1	0	0	1	0	l
it-plait	1	0	1	0	0	0	İ.

Sequence prediction

MAP: Hungarian algorithm marginals: intractable [Valiant '79; Taskar '04]

MAP: Viterbi algorithm marginals: forward-backward algorithm

Image credit: Vlad Niculae (PhD thesis, to appear)

Examples of structured inference

Dependency parsing

Time-series alignment 1 0 0 0 0 1 0 0 0 0 1 1

MAP: maximal arborescence algorithms marginals: Koo et al '07, Smith & Smith '07

MAP: dynamic time warping (DTW) marginals: soft-DTW [CB'17]

Relation between loss and inference

$$\min_{W}\sum_{i=1}^{n} L(\boldsymbol{\theta}_{i}; \boldsymbol{y}_{i}) \quad \boldsymbol{\theta}_{i} \equiv \boldsymbol{f}_{W}(\boldsymbol{x}_{i})$$

• Structured SVM loss:

$$L(oldsymbol{ heta};oldsymbol{y}) = \max_{oldsymbol{y}'\in\mathcal{Y}} \langleoldsymbol{ heta},oldsymbol{y}'
angle - \langleoldsymbol{ heta},oldsymbol{y}
angle$$

Subgradient requires a call to MAP inference

• Conditional random field (CRF) loss:

$$L(oldsymbol{ heta};oldsymbol{y}) = \log \sum_{oldsymbol{y}'\in\mathcal{Y}} \exp \langle oldsymbol{ heta},oldsymbol{y}'
angle - \langle oldsymbol{ heta},oldsymbol{y}
angle$$

Gradient requires a call to marginal inference

Issues with MAP inference

Can't deal with ambiguous ouputs

MAP inference returns only one output: the highest-scoring one. For difficult cases, we may want to know other likely outputs.

Lack of differentiability

$$\mathbf{x} \in \mathcal{X}
ightarrow \mathbf{f}_{W}
ightarrow \mathbf{\theta} \in \mathbb{R}^{d}
ightarrow \mathrm{MAP}
ightarrow \hat{\mathbf{y}} \in \mathcal{Y}
ightarrow \cdots$$

Can't use MAP as layer in a neural net pipeline

Issues with marginal inference

• Every **y** gets non-zero probability since $p(\mathbf{y}; \boldsymbol{\theta}) \propto \exp \langle \boldsymbol{\theta}, \mathbf{y} \rangle$

How to assign exactly zero probability to irrelevant y?

• Intractable for some output spaces ${\mathcal Y}$

Can we make inference differentiable and at the same time tractable for more output spaces?

We provide an answer based on convex duality and smoothing / regularization!

Outline

- Background: structured prediction
- Regularized prediction functions
- A new family of loss functions
- Generalized entropies, sparsity and separation margins
- Applications and experimental results

Prediction function as a linear program

View a combinatorial problem as continuous optimization

$$\widehat{m{y}}(m{ heta}) \in \operatorname*{argmax}_{m{y} \in \mathcal{Y}} \langle m{ heta}, m{y}
angle = \operatorname*{argmax}_{m{y} \in \operatorname{conv}(\mathcal{Y})} \langle m{ heta}, m{y}
angle$$

i.e., max of a linear form over a convex polytope

Note that when $\mathcal{Y} = \{ \boldsymbol{e}_i \}_{i=1}^d$, $\mathsf{conv}(\mathcal{Y}) = riangle^d$

Regularized prediction functions [NB'17,MB'18]

$$\widehat{m{y}}_{\Omega}(m{ heta}) \in rgmax_{m{\mu}\in ext{conv}(\mathcal{Y})} \ raket{m{ heta}} raket{m{ heta}},m{\mu}
angle - \Omega(m{\mu})$$

where $\boldsymbol{\Omega}$ is a convex regularization function

$$\widehat{oldsymbol{y}}_\Omega(oldsymbol{ heta})=oldsymbol{\mu}^\star=\mathbb{E}_{oldsymbol{
ho}}[Y]\in ext{conv}(\mathcal{Y})$$

for some, not necessarily unique, $oldsymbol{p} \in riangle^{|\mathcal{Y}|}$

Relation with the convex conjugate

$$\widehat{y}_{\Omega}(oldsymbol{ heta}) \in rgmax_{oldsymbol{\mu}\in \mathsf{dom}(\Omega)} \ ig \langle oldsymbol{ heta},oldsymbol{\mu}
angle - \Omega(oldsymbol{\mu})$$

•
$$\Omega^*(oldsymbol{ heta})\coloneqq\max_{oldsymbol{\mu}\in\mathsf{dom}(\Omega)}\langleoldsymbol{ heta},oldsymbol{\mu}
angle-\Omega(oldsymbol{\mu})=\langleoldsymbol{ heta},\widehat{oldsymbol{y}}_\Omega(oldsymbol{ heta})
angle-\Omega(\widehat{oldsymbol{y}}_\Omega(oldsymbol{ heta}))$$

- $\hat{\boldsymbol{y}}_{\Omega}(\boldsymbol{\theta}) \in \partial \Omega^{*}(\boldsymbol{\theta})$ (from Danskin's theorem)
 - $\widehat{\boldsymbol{y}}_{\Omega}(\boldsymbol{\theta}) = \nabla \Omega^{*}(\boldsymbol{\theta})$ if Ω is strictly convex

Benefit of regularization 1

Dealing with ambiguous predictions

Regularization moves $\hat{y}_{\Omega}(\theta)$ away from the vertices of the marginal polytope: $\hat{y}_{\Omega}(\theta) = \text{convex combination of } \mathbf{y} \in \mathcal{Y}$

entropic regularization (marginals)

quadratic regularization

Benefit of regularization 2

Smoothing effect

- If Ω is strongly convex then
- Ω^* is smooth (differentiable with Lipschitz continuous gradient)
- $\hat{m{y}}_{\Omega} =
 abla \Omega^{*}$ is differentiable almost everywhere

$$\boldsymbol{x} \in \mathcal{X} \to \boldsymbol{f}_{\boldsymbol{W}} \to \boldsymbol{\theta} \in \mathbb{R}^d \to \widehat{\boldsymbol{y}}_{\Omega} \to \dots$$

Differentiable pipeline, can be trained end-to-end using backpropagation!

Outline

- Background: structured prediction
- Regularized prediction functions
- A new family of loss functions
- Generalized entropies, sparsity and separation margins
- Applications and experimental results

Fenchel-Young losses

• Fenchel-Young loss generated by Ω [NMBC'17, BMN '18]

$$\mathsf{L}_\Omega(oldsymbol{ heta};oldsymbol{y})\coloneqq \Omega^*(oldsymbol{ heta})+\Omega(oldsymbol{y})-\langleoldsymbol{ heta},oldsymbol{y}
angle$$

where $\boldsymbol{\theta} \in \mathsf{dom}(\Omega^*) = \mathbb{R}^d$ and $\boldsymbol{y} \in \mathcal{Y} \subseteq \mathsf{dom}(\Omega)$ is the ground-truth

Grounded in the Fenchel-Young inequality

 $\Omega^*(\boldsymbol{\theta}) + \Omega(\boldsymbol{\mu}) \geq \langle \boldsymbol{\theta}, \boldsymbol{\mu} \rangle \quad \forall \boldsymbol{\theta} \in \mathsf{dom}(\Omega^*), \boldsymbol{\mu} \in \mathsf{dom}(\Omega).$

Properties of Fenchel-Young losses

$$\mathsf{L}_{\Omega}(\boldsymbol{\theta};\boldsymbol{y})\coloneqq \Omega^{*}(\boldsymbol{\theta}) + \Omega(\boldsymbol{y}) - \langle \boldsymbol{\theta},\boldsymbol{y} \rangle$$

- 1. Non-negativity: $L_{\Omega}(\boldsymbol{\theta}; \boldsymbol{y}) \geq 0$
- 2. Zero loss: $L_{\Omega}(\boldsymbol{ heta}; \boldsymbol{y}) = 0 \Leftrightarrow \widehat{\boldsymbol{y}}_{\Omega}(\boldsymbol{ heta}) = \boldsymbol{y}$
- 3. Convex and differentiable in θ

Properties stated for strictly convex Ω for notational simplicity.

Learning with Fenchel-Young losses

Primal:
$$\min_{W} \sum_{i=1}^{n} L_{\Omega}(\boldsymbol{\theta}_i; \boldsymbol{y}_i) + G(W) \text{ s.t. } \boldsymbol{\theta}_i \equiv \boldsymbol{f}_W(\boldsymbol{x}_i)$$

Gradients: $abla_{ heta} L_{\Omega}(m{ heta};m{y}) = \hat{m{y}}_{\Omega}(m{ heta}) - m{y}$ ("residual vector")

If $\boldsymbol{f}_W(\boldsymbol{x}) = W\boldsymbol{x}$ then

$$\begin{array}{ll} \textbf{Dual:} & \max_{\beta} - D(\beta) \text{ s.t. } \boldsymbol{\beta}_i \in \text{dom}(\Omega) \ \forall i \in [n] \\ \\ D(\beta) \coloneqq & \sum_i \Omega(\boldsymbol{\beta}_i) - \Omega(\boldsymbol{y}_i) + \boldsymbol{G}^* \left(\sum_{i=1}^n (\boldsymbol{y}_i - \boldsymbol{\beta}_i) \boldsymbol{x}_i^\top \right) \end{array}$$

Learning with Fenchel-Young losses

Primal:
$$\min_{W} \sum_{i=1}^{n} L_{\Omega}(\boldsymbol{\theta}_i; \boldsymbol{y}_i) + G(W) \text{ s.t. } \boldsymbol{\theta}_i \equiv \boldsymbol{f}_W(\boldsymbol{x}_i)$$

Gradients: $abla_{ heta} L_{\Omega}(m{ heta};m{y}) = \hat{m{y}}_{\Omega}(m{ heta}) - m{y}$ ("residual vector")

If
$$\boldsymbol{f}_W(\boldsymbol{x}) = W\boldsymbol{x}$$
 then

$$\begin{array}{ll} \textbf{Dual:} & \max_{\beta} - D(\beta) \text{ s.t. } \boldsymbol{\beta}_i \in \text{dom}(\Omega) \ \forall i \in [n] \\ \\ D(\beta) \coloneqq \sum_i \Omega(\boldsymbol{\beta}_i) - \Omega(\boldsymbol{y}_i) + G^* \left(\sum_{i=1}^n (\boldsymbol{y}_i - \boldsymbol{\beta}_i) \boldsymbol{x}_i^\top \right) \end{array}$$

Relation with Bregman divergences

• Bregman divergence generated by strictly convex Ω

$$\mathcal{B}_{\Omega}(oldsymbol{y}||oldsymbol{\mu})\coloneqq\Omega(oldsymbol{y})-\Omega(oldsymbol{\mu})-\langle
abla\Omega(oldsymbol{\mu}),oldsymbol{y}-oldsymbol{\mu}
angle$$

• Using $oldsymbol{ heta}=
abla\Omega(oldsymbol{\mu})$ we get

$$\mathsf{B}_\Omega(oldsymbol{y}||oldsymbol{\mu}) = L_\Omega(oldsymbol{ heta};oldsymbol{y})$$

Proof uses that if $\boldsymbol{\Omega}$ is a l.s.c. proper convex function, then

$$\Omega^*(oldsymbol{ heta})+\Omega(oldsymbol{\mu})=\langleoldsymbol{ heta},oldsymbol{\mu}
angle \Leftrightarrowoldsymbol{\mu}=
abla\Omega^*(oldsymbol{ heta})\Leftrightarrowoldsymbol{ heta}=
abla\Omega(oldsymbol{\mu})$$

Relation with Bregman divergences

• Bregman divergences are defined in primal space

$$\mathsf{B}_\Omega\colon \mathsf{dom}(\Omega)\times\mathsf{dom}(\Omega)\to\mathbb{R}_+$$

• Fenchel-Young losses are defined in "mixed space"

$$\mathsf{L}_\Omega\colon \mathsf{dom}(\Omega^*) imes\mathcal{Y}\subseteq\mathsf{dom}(\Omega) o\mathbb{R}_+$$

 $B_{\Omega}(\mathbf{y}||\widehat{\mathbf{y}}_{\Omega}(\mathbf{\theta})) = B_{\Omega}(\mathbf{y}||\nabla \Omega^{*}(\mathbf{\theta}))$ not necessarily convex!

Tsallis α -entropies [Tsallis '88]

Choose dom
$$(\Omega) = riangle^{|\mathcal{Y}|}$$
 and $\Omega = -\mathsf{H}^{ ext{T}}_{lpha}$

$$\mathsf{H}^{\scriptscriptstyle\mathrm{T}}_{lpha}(oldsymbol{p})\coloneqq \sum_{j=1}^{|\mathcal{Y}|}h_{lpha}(p_j) \hspace{1em} ext{with} \hspace{1em} h_{lpha}(t)\coloneqq rac{t-t^{lpha}}{lpha(lpha-1)}$$

A parametric family of separable entropies

Delta distribution, perceptron loss

$$\Omega(oldsymbol{p}) = -\mathsf{H}_{\infty}^{\scriptscriptstyle\mathrm{T}}(oldsymbol{p}) = 0$$

"delta" distribution

$$\widehat{m{y}}_{\Omega}(m{ heta})\in rgmax_{m{y}\in\{m{e}_i\}}ig\langlem{ heta},m{y}
angle$$

perceptron loss

$$\mathsf{L}_{\Omega}(\boldsymbol{ heta}; \boldsymbol{e}_j) = \max_{i \in [k]} heta_i - heta_j$$

argmax (1, 0, 0)

Softmax distribution, logistic loss

$$\Omega(\boldsymbol{p}) = -\mathsf{H}_{1}^{\mathrm{T}}(\boldsymbol{p}) = \sum_{i} p_{i} \log p_{i}$$

 $\frac{\exp \boldsymbol{\theta}}{\sum_{i=1}^k \exp \theta_i}$

$$\mathsf{logistic\ loss} \\ \mathsf{L}_{\Omega}(\boldsymbol{\theta}; \boldsymbol{e}_j) = \mathsf{log} \sum_{i \in [k]} \mathsf{exp}\, \theta_i - \theta_j$$

argmax (1, 0, 0)

 $\widehat{\boldsymbol{y}}_{\Omega}(\boldsymbol{ heta})$

sparsemax distribution, loss [Martins & Astudillo '16]

negative Gini index [Gini 1912]

$$\Omega(\boldsymbol{p}) = -\mathsf{H}_2^{\scriptscriptstyle \mathrm{T}}(\boldsymbol{p}) = rac{1}{2}\sum_i p_i(p_i-1) = rac{1}{2}\|\boldsymbol{p}\|^2 - rac{1}{2}$$

projection onto the simplex / sparsemax

$$\widehat{\boldsymbol{y}}_{\Omega}(\boldsymbol{\theta}) = \underset{\boldsymbol{p} \in \triangle^{k}}{\operatorname{argmin}} \|\boldsymbol{p} - \boldsymbol{\theta}\|^{2}$$
subscript{sparsemax}

27

CRFs and structured sparsemax

Choose dom(Ω) = conv(\mathcal{Y})

Conditional Random Fields: maximum entropy principle

$$-\Omega(oldsymbol{\mu}) = \max_{oldsymbol{p} \in riangle^{|\mathcal{Y}|}} {\mathsf{H}}^{\mathrm{s}}(oldsymbol{p}) ext{ s.t. } \mathbb{E}_{oldsymbol{p}}[Y] = oldsymbol{\mu}$$

Then $\widehat{\boldsymbol{y}}_{\Omega}(\boldsymbol{\theta}) = \nabla \Omega^{*}(\boldsymbol{\theta}) = \text{marginals}(\boldsymbol{\theta})$; tractable for some $\mathcal Y$

• Structured sparsemax: minimum norm

$$\Omega(oldsymbol{\mu}) = \min_{oldsymbol{p} \in riangle^{|\mathcal{V}|}} \|oldsymbol{p}\|^2 ext{ s.t. } \mathbb{E}_{oldsymbol{p}}[Y] = oldsymbol{\mu}$$

Computing $\widehat{y}_{\Omega}(\theta) =:$ sparsemax-mean (θ) likely intractable for structured \mathcal{Y}

CRFs and structured sparsemax

Choose dom(Ω) = conv(\mathcal{Y})

Conditional Random Fields: maximum entropy principle

$$-\Omega(oldsymbol{\mu}) = \max_{oldsymbol{p} \in riangle^{|\mathcal{Y}|}} {\sf H}^{
m s}(oldsymbol{p}) \; {
m s.t.} \; \mathbb{E}_{oldsymbol{p}}[Y] = oldsymbol{\mu}$$

Then $\widehat{\boldsymbol{y}}_{\Omega}(\boldsymbol{\theta}) = \nabla \Omega^{*}(\boldsymbol{\theta}) = \text{marginals}(\boldsymbol{\theta})$; tractable for some \mathcal{Y}

• Structured sparsemax: minimum norm

$$\Omega(oldsymbol{\mu}) = \min_{oldsymbol{p} \in riangle^{|\mathcal{Y}|}} \|oldsymbol{p}\|^2 ext{ s.t. } \mathbb{E}_{oldsymbol{p}}[Y] = oldsymbol{\mu}$$

Computing $\widehat{y}_{\Omega}(\theta) =:$ sparsemax-mean(θ) likely intractable for structured \mathcal{Y}

sparseMAP: mean space regularization [NMBC '18]

$$\hat{\boldsymbol{y}}_{\Omega}(\boldsymbol{\theta}) = \operatorname*{argmax}_{\boldsymbol{\mu} \in \operatorname{conv}(\mathcal{Y}) \subseteq \mathbb{R}^{d}} \langle \boldsymbol{\theta}, \boldsymbol{\mu} \rangle - \|\boldsymbol{\mu}\|^{2}$$

- ŷ_Ω can be computed using the conditional gradient algorithm (a.k.a. Frank-Wolfe)
- Main ingredient is the linear (min|max)imization oracle

$$\mathop{\mathsf{argmax}}_{\boldsymbol{y}\in\mathcal{Y}} \ \langle \boldsymbol{\theta}, \boldsymbol{y} \rangle = \mathsf{MAP}(\boldsymbol{\theta})$$

• FW returns both μ^{\star} and one possible $m{p}$ s.t. $\mathbb{E}_{m{p}}[Y] = \mu^{\star}$

Smoothed dynamic programming [CB' 17, MB '18]

- When ${\mathcal Y}$ can be represented as a DAG, MAP inference can be computed by dynamic programming
- Key idea: Smooth the max/min operator within Bellman's recursion
- Entropic regul: marginals $(oldsymbol{ heta}) =
 abla \mathsf{DP}_\Omega(oldsymbol{ heta}) \in \mathsf{conv}(\mathcal{Y})$
- Quadratic regul: sparsemax-mean $(m{ heta}) pprox
 abla \mathsf{DP}_\Omega(m{ heta}) \in \mathsf{conv}(\mathcal{Y})$

- initialize v at edge cases
- for all (*i*, *j*) in topological order:

$$v_{i,j} = \theta_{i,j} + \operatorname{softmin}_{\Omega} \{ v_{i-1,j}, v_{i,j-1}, v_{i-1,j-1} \}$$

• Output: $\mathsf{DP}_{\Omega}(\theta) \coloneqq v_{m,n}(\theta)$ (convex in θ !)

Backpropagating through $\widehat{\boldsymbol{y}}_{\Omega}$

$$\boldsymbol{x} \in \mathcal{X} \to \boldsymbol{f}_{\boldsymbol{W}} \to \boldsymbol{\theta} \in \mathbb{R}^d \to \hat{\boldsymbol{y}}_{\Omega} \to \dots$$

- Since $\hat{y}_{\Omega} = \nabla \Omega^*$, backpropagating through \hat{y}_{Ω} requires multipications with the Hessian: $\nabla^2 \Omega^*(\theta) z$ for some z
- Can be computed from the CG/FW solution by solving a linear system derived from the KKT conditions [NMBC '18]
- Another way is to backpropagate through the directional derivative at θ along z [Pearlmutter '94, MB '18]

$$abla^2 \mathsf{DP}_\Omega(oldsymbol{ heta}) oldsymbol{z} =
abla \langle
abla \mathsf{DP}_\Omega(oldsymbol{ heta}), oldsymbol{z}
angle$$

Summary of losses recovered

	$dom(\Omega)$	$\Omega(oldsymbol{\mu})$	$\widehat{oldsymbol{y}}_{\Omega}(oldsymbol{ heta})$	$L_{\Omega}(oldsymbol{ heta};oldsymbol{y})$
Squared loss	$\mathbb{R}^{ \mathcal{Y} }$	$rac{1}{2}\ oldsymbol{\mu}\ ^2$	θ	$rac{1}{2}\ oldsymbol{y}-oldsymbol{ heta}\ ^2$
Perceptron loss	$\bigtriangleup^{ \mathcal{Y} }$	0	$argmax({m heta})$	$max_i\theta_i-\theta_k$
Logistic loss	$\Delta \mathcal{Y} $	$-H^{s}({oldsymbol{\mu}})$	$softmax({m heta})$	$\log \sum_{i} \exp \theta_i - \theta_k$
Sparsemax loss	$\bigtriangleup^{ \mathcal{Y} }$	$rac{1}{2} \ oldsymbol{\mu}\ ^2$	$sparsemax(\boldsymbol{\theta})$	$\frac{1}{2} \ \boldsymbol{y} - \boldsymbol{\theta} \ ^2 - \frac{1}{2} \ \widehat{\boldsymbol{y}}_{\Omega}(\boldsymbol{\theta}) - \boldsymbol{\theta} \ ^2$
Struct. perceptron	$conv(\mathcal{Y})$	0	$MAP(\boldsymbol{\theta})$	$max_{oldsymbol{y}'}ig \langle oldsymbol{ heta}, oldsymbol{y}' angle - ig \langle oldsymbol{ heta}, oldsymbol{y} angle$
CRF	$conv(\mathcal{Y})$	$\min_{\mathbb{E}_{\boldsymbol{p}}[Y]=\boldsymbol{\mu}}-H^{s}(\boldsymbol{p})$	$marginals(\pmb{\theta})$	$\log\sum_{m{y}'}\exp{\langlem{ heta},m{y}' angle}-\langlem{ heta},m{y} angle$
Struct. sparsemax	$conv(\mathcal{Y})$	$\min_{\mathbb{E}_{\boldsymbol{p}}[Y]=\boldsymbol{\mu}} \ \boldsymbol{p}\ ^2$	intractable*	intractable*
SparseMAP	$conv(\mathcal{Y})$	$rac{1}{2} \ oldsymbol{\mu}\ ^2$	$sparseMAP(\pmb{\theta})$	$\frac{1}{2} \ \boldsymbol{y} - \boldsymbol{\theta} \ ^2 - \frac{1}{2} \ \widehat{\boldsymbol{y}}_{\Omega}(\boldsymbol{\theta}) - \boldsymbol{\theta} \ ^2$

* Can be approximated by smoothed dynamic programming [MB '18]

Outline

- Background: structured prediction
- Regularized prediction functions
- A new family of loss functions
- Generalized entropies, sparsity and separation margins
- Applications and experimental results

Generalized entropies [DeGroot '62, Grunwald & Dawid '04]

Use a concave function H(p) to measure the "uncertainty" in $p \in \triangle^{|\mathcal{Y}|}$

A wealth of new loss and prediction functions [BMN '18]

Properties of generalized entropies

• Assumption 1:
$$H(\boldsymbol{p}) = 0$$
 if $\boldsymbol{p} \in \{\boldsymbol{e}_i\}$

• Assumption 2: H is strictly concave over dom $(\Omega) = riangle^{|\mathcal{Y}|}$

Assumption 3: H(Pp) for any permutation matrix P

• Maximum:
$$\underset{\boldsymbol{p} \in \triangle^{|\mathcal{Y}|}}{\operatorname{argmax}} H(\boldsymbol{p}) = \frac{1}{|\mathcal{Y}|}$$

• Order-preservingness: If $p = \widehat{y}_{\Omega}(s) = \nabla (-H)^*(s)$ then

$$s_i > s_j \Rightarrow p_i \ge p_j$$

Condition for sparse prediction function

When is
$$\widehat{oldsymbol{y}}_\Omega =
abla (-\mathsf{H})^*$$
 sparse?

Under assumptions 1 to 3:

$$\forall \boldsymbol{\rho} \in \triangle^{|\mathcal{Y}|} : \partial(-\mathsf{H})(\boldsymbol{\rho}) \neq \varnothing \Leftrightarrow \nabla(-\mathsf{H})^*(\mathbb{R}^{|\mathcal{Y}|}) = \triangle^{|\mathcal{Y}|}$$

i.e., $\nabla(-H)^*$ covers the full simplex

Functions whose gradient "explode" at the boundary (e.g., Shannon entropy) are called "essentially smooth". For those functions, $\nabla(-H)^*$ maps only to the relative interior of $\triangle^{|\mathcal{Y}|}$.

Separation margin of a loss

A loss $L(\mathbf{s}; \mathbf{y})$ over $\mathbb{R}^{|\mathcal{Y}|} \times {\{\mathbf{e}_i\}_{i=1}^{|\mathcal{Y}|}}$, where $\mathbf{y} = \mathbf{e}_k$ is the ground truth, has a separation margin m > 0 if

$$\mathbf{s}_k \geq m + \max_{j \neq k} \mathbf{s}_j \quad \Rightarrow \quad L(\mathbf{s}; \mathbf{y}) = 0$$

We denote the smallest such m by margin(L).

Condition for separation margin and value

$$L_{-\mathsf{H}}(oldsymbol{s};oldsymbol{e}_k)$$
 has a separation margin m
 \oplus
 $moldsymbol{e}_k\in\partial(-\mathsf{H})(oldsymbol{e}_k)$

Tight link between margins and sparse prediction functions!

For twice differentiale H:

$$\operatorname{margin}(L_{-H}) = \nabla_{j} H(\boldsymbol{e}_{k}) - \nabla_{k} H(\boldsymbol{e}_{k}).$$

For separable entropies $H = \sum_{j} h(p_{j})$: $\operatorname{margin}(L_{-H}) = h'(0) - h'(1)$

Outline

- Background: structured prediction
- Regularized prediction functions
- A new family of loss functions
- Generalized entropies, sparsity and separation margins
- Applications and experimental results

Named Entity Recognition [MB '18]

- Identify blocks of words corresponding to names, locations, etc
- Pipeline

sentence $\boldsymbol{x} \in \mathcal{X} \to \boxed{\text{bi-LSTM}} \to \boldsymbol{\theta} \in \mathbb{R}^{d} \to \boxed{\mathsf{L}_{\Omega}} \to \mathbb{R}_{+}$ sentence $\boldsymbol{x} \in \mathcal{X} \to \boxed{\text{bi-LSTM}} \to \boldsymbol{\theta} \in \mathbb{R}^{d} \to \boxed{\hat{\boldsymbol{y}}_{\Omega}} \to \boxed{\Delta(\cdot, \cdot)} \to \mathbb{R}_{+}$

Results on CoNLL 2013 shared task:

Ω	Loss	English	Spanish	German	Dutch
Negentropy	Surrogate	90.80	86.68	77.35	87.56
	Relaxed	90.47	86.20	77.56	87.37
ℓ_2^2	Surrogate	90.86	85.51	76.01	86.58
	Relaxed	89.49	84.07	76.91	85.90
(Lample et	al., 2016)	90.96	85.75	78.76	81.74

Machine Translation with Attention [MB '18]

- Translate source language into target language
- RNN pipeline: decoding step for outputting the next word encoding $\mathbf{x} \to [\underline{\text{scoring}}] \to \boldsymbol{\theta} \to [\widehat{\mathbf{y}}_{\Omega}] \to \text{ attention weights}$ RNN decoder state \mathbf{z}

• ℓ_2^2 reg achieves similar accuracy with more interpretable maps

Attention model	WMT14 1M fr \rightarrow en	WMT14 en \rightarrow fr
Softmax	27.96	28.08
Entropy regularization	27.96	27.98
ℓ_2^2 reg.	27.21	27.28

Natural Language Inference [NMBC '18]

- Infer whether two sentence agree, contradict, are neutral
- Pipeline:

Results on the SNLI and multi-SNLI dataset

Accuracy scores and percentage of non-aligned pairs

ESIM variant	MultiNLI	SNLI
softmax	76.05 (100%)	86.52 (100%)
sequential	75.54 (13%)	86.62 (19%)
matching	76.13 (8%)	86.05 (15%)

Dependency parsing [NMBC '18]

• Predict the directed tree of grammatical dependencies between words in a sentence

Pipeline:
sentence
$$\mathbf{x} \in \mathcal{X} \rightarrow \boxed{\text{bi-LSTM}} \rightarrow \boldsymbol{\theta} \in \mathbb{R}^d \rightarrow \boxed{\mathsf{L}_{\Omega}} \rightarrow \mathbb{R}_+$$

Results on Universal Dependency data (CoNLL 2017 shared task)

Loss	en	zh	vi	ro	ja
Structured SVM	87.02	81.94	69.42	87.58	96.24
CRF	86.74	83.18	69.10	87.13	96.09
SPARSEMAP	86.90	84.03	69.71	87.35	96.04
m-SparseMAP	87.34	82.63	70.87	87.63	96.03
UDPipe baseline	87.68	82.14	69.63	87.36	95.94

Conclusion

- Regularization / smoothing allows to deal with ambiguous outputs and brings differentiability
- FY losses allow to learn such regularized prediction functions and unify a wealth of existing losses
- Link between sparsity of $\hat{y}_{\Omega} = \nabla \Omega^*$, sparsity of dual variables and margin of L_{Ω}
- FY losses support arbitrary dom(Ω), allowing a wide variety of (unexplored) applications

References

- Blondel et al. Learning Classifiers with Fenchel-Young Losses: Generalized Entropies, Margins, and Algorithms. arXiv preprint, 2018.
- Cuturi & Blondel. Soft-DTW: a differentiable loss function for time-series. ICML, 2017.
- DeGroot. Uncertainty, information, and sequential experiments. The Annals of Mathematical Statistics, 1962.
- Grunwald & Dawid. Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory. Annals of Statistics, 2004.
- Koo et al. Structured prediction models via the matrix-tree theorem. EMNLP, 2007.
- Martins & Astudillo. From softmax to sparsemax: A sparse model of attention and multi-label classification. ICML, 2016.
- Mensch & Blondel. Differentiable Dynamic Programming for Structured Prediction and Attention. ICML, 2018.
- Niculae & Blondel. A regularized framework for sparse and structured neural attention. NIPS, 2017.

References

- Niculae et al. SparseMAP: Differentiable Sparse Structured Inference. ICML 2018.
- Pearlmutter. Fast exact multiplication by the Hessian. Neural computation, 1994.
- Smith & Smith. Probabilistic models of nonprojective dependency trees. EMNLP, 2007
- Taskar et al. Max-Margin Markov Networks, NIPS 2003.
- Tsallis. Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 1988.
- Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 1979.
- Wainwright & Jordan. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 2008.