Structured Prediction with Projection Oracles

Mathieu Blondel

NTT, Kyoto, Japan

June 19th, 2019

Outline

1. Background

2. Proposed framework

3. Experiments

Outline

1. Background

2. Proposed framework

3. Experiments

Surrogate losses

Surrogate loss risk

 $\mathcal{S}(g) \triangleq \mathbb{E}_{(X,Y) \sim p} S(g(X), Y)$ $S: \Theta \times \mathscr{Y} \to \mathbb{R}_+$

Surrogate losses

$$\mathcal{S}(g) \triangleq \mathbb{E}_{(X,Y)\sim p} \ S(g(X),Y) \qquad S: \Theta \times \mathcal{Y} \to \mathbb{R}_+$$

Fisher consistency

$$\mathcal{S}(g_n) \to \inf_{g \in \mathcal{G}} \mathcal{S}(g) \longrightarrow \mathcal{L}(dec \circ g_n) \to \inf_{g \in \mathcal{G}} \mathcal{L}(dec \circ g)$$

Surrogate losses

Surrogate loss risk

$$\mathcal{S}(g) \triangleq \mathbb{E}_{(X,Y)\sim p} \ S(g(X),Y) \qquad S: \Theta \times \mathscr{Y} \to \mathbb{R}_+$$
Fisher consistency

$$\mathcal{S}(g_n) \to \inf_{g \in \mathscr{G}} \mathcal{S}(g) \longrightarrow \mathscr{L}(dec \circ g_n) \to \inf_{g \in \mathscr{G}} \mathscr{L}(dec \circ g)$$

Extensively studied in the multiclass setting [Zhang 2004, Bartlett et al. 2006]

Only recently studied in the structured setting

[Ciliberto et al 2016, Osokin et al. 2017, Nowak-Vila et al. 2019]

[Collins, 2002]

Loss $S(\theta, y) \triangleq \max \langle \theta, \varphi(y') \rangle - \langle \theta, \varphi(y) \rangle \quad \varphi \colon \mathcal{Y} \to \mathbb{R}^d$ $y' \in \mathcal{Y}$

[Collins, 2002]

Loss $S(\theta, y) \triangleq \max \langle \theta, \varphi(y') \rangle - \langle \theta, \varphi(y) \rangle$ $\varphi\colon \mathscr{Y}\to \mathbb{R}^d$ $y' \in \mathcal{Y}$ Training oracle $MAP(\theta) \triangleq \arg \max \langle \theta, \varphi(y) \rangle$ $y \in \mathcal{Y}$

[Collins, 2002]

Loss $S(\theta, y) \triangleq \max \langle \theta, \varphi(y') \rangle - \langle \theta, \varphi(y) \rangle$ $\varphi\colon \mathscr{Y} \to \mathbb{R}^d$ $y' \in \mathcal{Y}$ **Decoding oracle** Training oracle $MAP(\theta) \triangleq \arg \max \langle \theta, \varphi(y) \rangle$ dec = MAP $y \in \mathcal{Y}$

[Collins, 2002]

Loss $\varphi\colon\mathscr{Y}\to\mathbb{R}^d$ $S(\theta, y) \triangleq \max \langle \theta, \varphi(y') \rangle - \langle \theta, \varphi(y) \rangle$ $y' \in \mathcal{Y}$ **Decoding oracle** Training oracle $MAP(\theta) \triangleq \arg \max \langle \theta, \varphi(y) \rangle$ dec = MAP $y \in \mathcal{Y}$

X Not smooth
X Not consistent

[Tsochantaridis et al., 2005]

Loss $S(\theta, y) \triangleq \max_{y' \in \mathcal{Y}} L(y', y) + \langle \theta, \varphi(y') \rangle - \langle \theta, \varphi(y) \rangle$

[Tsochantaridis et al., 2005]

[Tsochantaridis et al., 2005]

[Tsochantaridis et al., 2005]

× Not smooth × Not consistent

[Lafferty et al., 2001]

Loss $S(\theta, y) \triangleq \log \sum e^{\langle \theta, \varphi(y') \rangle} - \langle \theta, \varphi(y) \rangle$ $y' \in \mathcal{Y}$

[Lafferty et al., 2001]

Loss

$$S(\theta, y) \triangleq \log \sum_{y' \in \mathcal{Y}} e^{\langle \theta, \varphi(y') \rangle} - \langle \theta, \varphi(y) \rangle$$

Training oracle

$$marginal(\theta) \triangleq \mathbb{E}_{Y \sim p(\cdot;\theta)}[\varphi(Y)]$$

$$p(y;\theta) \propto \exp\langle\varphi(y),\theta\rangle$$

[Lafferty et al., 2001]

racle

Loss

$$S(\theta, y) \triangleq \log \sum_{y' \in \mathscr{Y}} e^{\langle \theta, \varphi(y') \rangle} - \langle \theta, \varphi(y) \rangle$$
Training oracle

$$marginal(\theta) \triangleq \mathbb{E}_{Y \sim p(\cdot;\theta)}[\varphi(Y)]$$

$$p(y; \theta) \propto \exp\langle \varphi(y), \theta \rangle$$
Decoding oracle

$$MAP$$
Calibrated decoding

[Lafferty et al., 2001]

Loss

$$S(\theta, y) \triangleq \log \sum_{y' \in \mathscr{Y}} e^{\langle \theta, \varphi(y') \rangle} - \langle \theta, \varphi(y) \rangle$$
Training oracle

$$marginal(\theta) \triangleq \mathbb{E}_{Y \sim p(\cdot; \theta)}[\varphi(Y)]$$

$$p(y; \theta) \propto \exp\langle \varphi(y), \theta \rangle$$
Decoding oracle
MAP
Calibrated decoding

✓ Smooth

✓ Consistent (w/ calibrated decoding) [Nowak-Vila et al., 2019]

[Lafferty et al., 2001]

Loss

$$S(\theta, y) \triangleq \log \sum_{y' \in \mathscr{Y}} e^{\langle \theta, \varphi(y') \rangle} - \langle \theta, \varphi(y) \rangle$$
Training oracle

$$marginal(\theta) \triangleq \mathbb{E}_{Y \sim p(\cdot;\theta)}[\varphi(Y)]$$

$$p(y; \theta) \propto \exp\langle \varphi(y), \theta \rangle$$
Decoding oracle
MAP
Calibrated decoding

✓ Smooth

✓ Consistent (w/ calibrated decoding) [Nowak-Vila et al., 2019]
 × Marginal inference is intractable for some tasks

[Ciliberto et al., 2016]

Loss

$$S(\theta, y) \triangleq \frac{1}{2} \|\varphi(y) - \theta\|^2$$

[Ciliberto et al., 2016]

Loss

$$S(\theta, y) \triangleq \frac{1}{2} \|\varphi(y) - \theta\|^2$$

[Ciliberto et al., 2016]

Loss

$$S(\theta, y) \triangleq \frac{1}{2} \|\varphi(y) - \theta\|^2$$

[Ciliberto et al., 2016]

✓ Smooth
 ✓ Consistent (when using calibrated decoding)

[Ciliberto et al., 2016]

✓ Smooth
 ✓ Consistent (when using calibrated decoding)
 × Ignores structural information at training time

Summary

Loss	Training oracle	Decoding	Smooth	Consistent
Perceptron	MAP	MAP	No	No
SVM	Loss-augmented MAP	MAP	No	No
CRF	Marginal	MAP Calibrated decoding	Yes	No Yes
Squared	None	Calibrated decoding	Yes	Yes

Summary

Loss	Training oracle	Decoding	Smooth	Consistent
Perceptron	MAP	MAP	No	No
SVM	Loss-augmented MAP	MAP	No	No
CRF	Marginal	MAP Calibrated decoding	Yes	No Yes
Squared	None	Calibrated decoding	Yes	Yes
Propose	ed Projection	Calibrated decoding	Yes	Yes

Outline

2. Proposed framework

3. Experiments

Proposed inference pipeline

Proposed inference pipeline

Proposed inference pipeline

Choice of the convex set

Smallest convex set = **convex hull** (a.k.a. marginal polytope)

Choice of the convex set

Smallest convex set = **convex hull** (a.k.a. marginal polytope)

Choice of the convex set

Smallest convex set = **convex hull** (a.k.a. marginal polytope)

Choice of the convex set

Smallest convex set = **convex hull** (a.k.a. marginal polytope)

Can use any superset with cheaper to compute projection

Squared loss

$$SQ(\theta, y) \triangleq \frac{1}{2} \|\varphi(y) - \theta\|^2 = c$$

 $NC_{\mathscr{C}}(\theta, y) \triangleq \frac{1}{2} \|\varphi(y) - P_{\mathscr{C}}(\theta)\|^2 = b$

 $NC_{\mathscr{C}}(\theta, y) \triangleq \frac{1}{2} \|\varphi(y) - P_{\mathscr{C}}(\theta)\|^2 = b$

Proposed loss

$$S_{\mathscr{C}}(\theta, y) \triangleq SQ(\theta, y) - \frac{1}{2} \|\theta - P_{\mathscr{C}}(\theta)\|^2 = c - a$$

1

$$S_{\mathscr{C}}(\theta, y) \triangleq SQ(\theta, y) - \frac{1}{2} \|\theta - P_{\mathscr{C}}(\theta)\|^2 = c - a$$

Λ

Generalized Pythagorean theorem

Properties

- 1. $S_{\mathscr{C}}(\theta, y)$ is convex w.r.t. θ
- 2. $S_{\mathscr{C}}(\theta, y)$ is smooth w.r.t. θ (gradient is Lipschitz cont.)
- 3. $S_{\mathscr{C}}(\theta, y) \geq 0$
- 4. $S_{\mathscr{C}}(\theta, y) = 0 \Leftrightarrow P_{\mathscr{C}}(\theta) = \varphi(y)$

Upper bounds

Convex upper bound

 $NC_{\mathscr{C}}(\theta, y) \leq S_{\mathscr{C}}(\theta, y) \quad \forall \theta, \varphi(y) \in \mathscr{C}$

Upper bounds

Convex upper bound

 $NC_{\mathscr{C}}(\theta, y) \leq S_{\mathscr{C}}(\theta, y) \quad \forall \theta, \varphi(y) \in \mathscr{C}$

Upper bounds

Superset upper bound

 $S_{\mathscr{C}}(\theta, y) \leq S_{\mathscr{C}'}(\theta, y) \quad \forall \mathscr{C} \subseteq \mathscr{C}'$

Upper bounds

Superset upper bound

 $S_{\mathscr{C}}(\theta, y) \leq S_{\mathscr{C}'}(\theta, y) \quad \forall \mathscr{C} \subseteq \mathscr{C}'$

Let
$$\Omega(u) \triangleq \frac{1}{2} ||u||^2$$
 if $u \in \mathcal{C}$, ∞ otherwise

Let
$$\Omega(u) \triangleq \frac{1}{2} ||u||^2$$
 if $u \in \mathscr{C}$, ∞ otherwise

 $\begin{array}{l} \textbf{primal space}\\ \textbf{dom}(\Omega) = \mathscr{C} \end{array}$

Let
$$\Omega(u) \triangleq \frac{1}{2} ||u||^2$$
 if $u \in \mathcal{C}$, ∞ otherwise
dom(Ω) = \mathcal{C}
 $\varphi(y)$
 $\varphi(y)$

Let
$$\Omega(u) \triangleq \frac{1}{2} ||u||^2$$
 if $u \in \mathcal{C}$, ∞ otherwise
dom(Ω) = \mathcal{C}
 $U = \nabla \Omega^* = P_{\mathcal{C}}$
 $\psi(y)$

$$\Omega(u) \triangleq \langle u, \log u \rangle$$
 if $u \in \mathscr{C}$, ∞ otherwise

$$\Omega(u) \triangleq \langle u, \log u \rangle \text{ if } u \in \mathcal{C}, \text{ ∞ otherwise}$$
$$\nabla \Omega^*(\theta) = \arg \min_{u \in \mathcal{C}} KL(u, e^{\theta - 1})$$

$$\Omega(u) \triangleq \langle u, \log u \rangle \text{ if } u \in \mathcal{C}, \text{ } \infty \text{ otherwise}$$

$$\nabla \Omega^*(\theta) = \arg \min_{u \in \mathcal{C}} KL(u, e^{\theta - 1})$$

$$S_{\mathcal{C}}(\theta, y) = \Omega^*(\theta) + \Omega(\varphi(y)) - \langle \varphi(y), \theta \rangle$$

$$\Omega(u) \triangleq \langle u, \log u \rangle \text{ if } u \in \mathcal{C}, \text{ } \infty \text{ otherwise}$$

$$\nabla \Omega^*(\theta) = \arg \min_{u \in \mathcal{C}} KL(u, e^{\theta - 1})$$

$$S_{\mathcal{C}}(\theta, y) = \Omega^*(\theta) + \Omega(\varphi(y)) - \langle \varphi(y), \theta \rangle$$

Proposition Let $\beta = \max_{u \in \mathscr{C}} ||u||_1$. Then, $u \in \mathscr{C}$ $S_{\mathscr{C}}(\theta, y)$ is β -smooth with respect to $|| \cdot ||_{\infty}$.

$$\begin{split} \Omega(u) &\triangleq \langle u, \log u \rangle \text{ if } u \in \mathscr{C}, \ \infty \text{ otherwise} \\ \nabla \Omega^*(\theta) &= \arg \min_{u \in \mathscr{C}} KL(u, e^{\theta - 1}) \\ S_{\mathscr{C}}(\theta, y) &= \Omega^*(\theta) + \Omega(\varphi(y)) - \langle \varphi(y), \theta \rangle \\ \end{split}$$

$$\begin{aligned} \text{Proposition} \\ \text{Let } \beta &= \max_{u \in \mathscr{C}} \|u\|_1 \text{. Then,} \\ u \in \mathscr{C} \end{aligned}$$

$$\begin{aligned} S_{\mathscr{C}}(\theta, y) \text{ is } \beta \text{-smooth with respect to } \|\cdot\|_{\infty}. \end{split}$$

Affine decomposition of the target loss

$$L(\hat{y}, y) = \langle \varphi(\hat{y}), V\varphi(y) + b \rangle + c(y)$$

Affine decomposition of the target loss

$$L(\hat{y}, y) = \langle \varphi(\hat{y}), V\varphi(y) + b \rangle + c(y)$$

Decoding calibrated for loss L

$$\hat{y}_{L}(u) \triangleq \arg\min_{y' \in \mathscr{Y}} \langle \varphi(y'), Vu + b \rangle$$

Affine decomposition of the target loss

$$L(\hat{y}, y) = \langle \varphi(\hat{y}), V\varphi(y) + b \rangle + c(y)$$

Decoding calibrated for loss L

$$\hat{y}_{L}(u) \triangleq \arg\min_{y' \in \mathscr{Y}} \langle \varphi(y'), Vu + b \rangle$$

= MAP(-Vu - b)

Affine decomposition of the target loss

$$L(\hat{y}, y) = \langle \varphi(\hat{y}), V\varphi(y) + b \rangle + c(y)$$

Decoding calibrated for loss L

$$\hat{y}_L(u) \triangleq \arg\min_{y' \in \mathscr{Y}} \langle \varphi(y'), Vu + b \rangle$$

$$= MAP(-Vu - b)$$

Decomposition important both for computational tractability and theoretical analysis

Consistency

Excess risks

$$\delta \mathscr{L}(f) \triangleq \mathscr{L}(f) - \inf_{f': \ \mathscr{X} \to \mathscr{Y}} \mathscr{L}(f')$$

$$\delta \mathcal{S}_{\mathscr{C}}(g) \triangleq \mathcal{S}_{\mathscr{C}}(g) - \inf_{g': \ \mathcal{X} \to \Theta} \mathcal{S}_{\mathscr{C}}(g')$$

Consistency

Excess risks

$$\delta \mathscr{L}(f) \triangleq \mathscr{L}(f) - \inf_{f' \colon \mathscr{X} \to \mathscr{Y}} \mathscr{L}(f')$$

$$\delta \mathcal{S}_{\mathscr{C}}(g) \triangleq \mathcal{S}_{\mathscr{C}}(g) - \inf_{g' \colon \mathscr{X} \to \Theta} \mathcal{S}_{\mathscr{C}}(g')$$

Calibration between excess risks

$$\forall g \colon \mathcal{X} \to \Theta \colon \frac{\delta \mathscr{L}(dec \circ g)^2}{8\beta\sigma^2} \leq \delta \mathscr{S}_{\mathscr{C}}(g)$$

 $dec \triangleq \hat{y}_L \circ P_{\mathscr{C}} \qquad \beta \triangleq \text{Lipschitz constant of } P_{\mathscr{C}} \qquad \sigma \triangleq \sup_{y \in \mathscr{Y}} \|V^{\mathsf{T}}\varphi(y)\|$ w.r.t. $\|\cdot\|$

Probability simplex

Probability simplex

$$\mathcal{M} = conv(\varphi(\mathcal{Y})) = \Delta^k$$

Probability simplex

Unit cube

Output set
$$\mathcal{Y} = 2^{[k]}$$
Unit cube

Marginal polytope

$$\mathscr{M} = [0,1]^k$$

Unit cube

Budget polytope

Output set $\mathcal{Y} = \{ y \in 2^{[k]} \colon l \le |y| \le u \}$

Budget polytope

Budget polytope

Order simplex

Output set $\mathcal{Y} = [k] \quad 1 \prec \dots \prec k$

Order simplex

Order simplex

Row-stochastic matrices

Permutahedron

Permutahedron

Marginal polytope
$$\mathcal{M} = \{ \mu \in \mathbb{R}^m : \sum_{i \in S} \mu_i \le \sum_{i=1}^{|S|} w_i \forall S \subset [m], \sum_{i=1}^m \mu_i = \sum_{i=1}^m w_i \}$$

Permutahedron

Outline

2. Proposed framework

3. Experiments

$$\frac{1}{n} \sum_{i=1}^{n} S_{\mathscr{C}}(Wx_i, y_i) + \lambda \|W\|_F^2$$

- Label ranking
- Ordinal regression
- Multilabel classification

Full-ranking supervision setting (no relevance scores)

e.g.
$$2 > 1 > 3 > 4$$

Full-ranking supervision setting (no relevance scores)

e.g.
$$2 > 1 > 3 > 4$$
Projection
Decoding $\mathbb{R}^{m \times m}$ Authorship
Glass5.70Since
Since7.11Iris19.26Vehicle9.04Vowel10.57Wine**1.23**

= squared loss

Full-ranking supervision setting (no relevance scores)

e.g.
$$2 > 1 > 3 > 4$$

Projection Decoding	$\mathbb{R}^{m imes m}$	$\begin{matrix} [0,1]^{m\times m} \\ \mathcal{B} \end{matrix}$
Authorship Glass Iris Vehicle Vowel	5.70 7.11 19.26 9.04 10.57 1 23	5.18 5.68 4.44 7.57 9.56 1.85

= squared loss

Full-ranking supervision setting (no relevance scores)

e.g.
$$2 > 1 > 3 > 4$$

Projection	$\mathbb{R}^{m imes m}$	$[0,1]^{m \times m}$	$\triangle^{m \times m}$
Decoding	\mathcal{B}	${\mathcal B}$	${\mathcal B}$
Authorship	5.70	5.18	5.70
Glass	7.11	5.68	5.04
Iris	19.26	4.44	1.48
Vehicle	9.04	7.57	6.99
Vowel	10.57	9.56	9.18
Wine	1.23	1.85	1.85

= squared loss

Full-ranking supervision setting (no relevance scores)

e.g.
$$2 > 1 > 3 > 4$$

Projection Decoding	$\mathbb{R}^{m\times m} \\ \mathcal{B}$	$egin{array}{c} [0,1]^{m imes m} \ \mathcal{B} \end{array}$	${ riangle^{m imes m}}$	${\mathcal B} {\mathcal B}$
Authorship	5.70	5.18	5.70	5.10
Glass	7.11	5.68	5.04	4.65
Iris	19.26	4.44	1.48	2.96
Vehicle	9.04	7.57	6.99	5.88
Vowel	10.57	9.56	9.18	8.76
Wine	1.23	1.85	1.85	1.85

= squared loss

	Euclidean	vs. KL
Projection	\mathcal{B}	\mathcal{B}
Decoding	${\mathcal B}$	${\mathcal B}$
Authorship	5.10	5.10
Glass	4.65	4.65
Iris	2.96	2.96
Vehicle	5.88	6.25
Vowel	8.76	9.17
Wine	1.85	1.85

 $P_{\mathscr{B}}(Wx)$

Ś	pel 1	abell	abel 3 La	abel A Li	abels	abel6	U
Rank 6 -	0.00	0.00	0.00	0.00	0.06	0.94	0
Rank 5 -	0.00	0.00	0.28	0.72	0.00	0.00	- 0.2
Rank 4 -	0.23	0.18	0.48	0.10	0.00	0.00	- 0.4
 Rank 3 -	0.17	0.41	0.23	0.18	0.00	0.01	- 0.6
Rank 2 -	0.60	0.34	0.00	0.00	0.00	0.06	- 0.8
 Rank 1 -	0.00	0.06	0.00	0.00	0.94	0.00	

"soft permutation matrix"

	Euclidean	vs. KL
Projection	\mathcal{B}	\mathcal{B}
Decoding	${\mathcal B}$	${\mathcal B}$
Authorship	5.10	5.10
Glass	4.65	4.65
Iris	2.96	2.96
Vehicle	5.88	6.25
Vowel	8.76	9.17
Wine	1.85	1.85

Birkhoff vs. permutahedron

		Linear	Poly 2	Poly 3
Projection	\mathcal{B}	\mathcal{P}	\mathcal{P}	\mathcal{P}
Decoding	\mathcal{B}	\mathcal{P}	${\cal P}$	${\cal P}$
Authorship	5.10	10.06	10.50	8.59
Glass	4.65	7.49	7.10	8.14
Iris	2.96	27.41	20.00	5.93
Vehicle	5.88	11.62	8.30	9.26
Vowel	8.76	14.35	11.74	10.21
Wine	1.85	8.02	3.08	6.79
	$W \in \mathbb{R}^{p \times m^2}$	$W \in \mathbb{R}^{p \times m}$	$W \in \mathbb{R}^{n \times m}$	$W \in \mathbb{R}^{n \times m}$

Using Euclidean projections

$$\mathcal{Y} = [k] \qquad 1 \prec \dots \prec k$$

$$\mathcal{Y} = [k] \qquad 1 \prec \ldots \prec k$$

Projection Decoding	Baseline
Average MAE	0.78
Average rank	4.75

$$\mathcal{Y} = [k] \qquad 1 \prec \ldots \prec k$$

Projection Decoding	Baseline	ℝ Round
Average MAE	0.78	0.72
Average rank	4.75	2.9

$$\mathcal{Y} = [k] \qquad 1 \prec \dots \prec k$$

Projection Decoding	Baseline	R Round
Average MAE	0.78	0.72
Average rank	4.75	2.9

$$\mathcal{Y} = [k] \qquad 1 \prec \ldots \prec k$$

Projection Decoding	Baseline	R Round	$\mathbb{R}^{k-1} \mathcal{OS}$
Average MAE	0.78	0.72	0.47
Average rank	4.75	2.9	2.1

$$\mathcal{Y} = [k] \qquad 1 \prec \ldots \prec k$$

Projection Decoding	Baseline	ℝ Round	$\mathbb{R}^{k-1} \ \mathcal{OS}$	$\begin{matrix} [0,1]^{k-1} \\ \mathcal{OS} \end{matrix}$
Average MAE	0.78	0.72	0.47	0.45
Average rank	4.75	2.9	2.1	1.6

$$\mathcal{Y} = [k] \qquad 1 \prec \ldots \prec k$$

Projection Decoding	Baseline	R Round	$\mathbb{R}^{k-1} \mathcal{OS}$	$\begin{matrix} [0,1]^{k-1} \\ \mathcal{OS} \end{matrix}$	0S 0S
Average MAE	0.78	0.72	0.47	0.45	0.43
Average rank	4.75	2.9	2.1	1.6	1.5

Averaged over 16 datasets

L = MAE = Mean Absolute Error OS = Order Simplex

lower bound = 0 upper bound = $\left[\mathbb{E}[|Y|] + \sqrt{\mathbb{V}[|Y|]}\right]$

lower bound =	$= 0 \qquad \text{upper bound} = \left[\mathbb{E}[Y] + \sqrt{\mathbb{V}[Y]}\right]$
Projection Decoding	$\begin{matrix} [0,1]^k \\ [0,1]^k \end{matrix}$
Birds	38.87
Emotions	56.60
Scene	61.06

 \mathcal{K} : budget polytope

 F_1 score

	lower bound =	= 0 upper	r bound = E[$Y[] + \sqrt{\mathbb{V}[]}$
-	Projection Decoding	$egin{array}{c} [0,1]^k \ [0,1]^k \end{array}$	\mathbb{R}^k \mathcal{K}	
-	Birds	38.87	37.75	
	Emotions	56.60	51.73	
	Scene	61.06	50.33	

 \mathcal{K} : budget polytope

 F_1 score

lower bound =	= 0 upper	r bound = $\begin{bmatrix} E \end{bmatrix}$	$[Y] + \sqrt{\mathbb{V}[}$	<i>Y</i> []]
Projection Decoding	$egin{aligned} [0,1]^k \ [0,1]^k \end{aligned}$	\mathbb{R}^k \mathcal{K}	$egin{array}{c} [0,1]^k \ \mathcal{K} \end{array}$	
Birds	38.87	37.75	39.21	
Emotions	56.60	51.73	53.98	
Scene	61.06	50.33	58.95	

 \mathcal{K} : budget polytope

F₁ score
Multilabel classification

lower bound = 0 upper bound = $ \mathbb{E}[Y] + \sqrt{\mathbb{V}[Y]}$						
Projection Decoding	$[0,1]^k \ [0,1]^k$	\mathbb{R}^k \mathcal{K}	$egin{array}{c} [0,1]^k \ \mathcal{K} \end{array}$	$\mathcal{K} \mathcal{K}$		
Birds	38.87	37.75	39.21	39.43		
Emotions	56.60	51.73	53.98	62.57		
Scene	61.06	50.33	58.95	69.01		

 \mathcal{K} : budget polytope

 F_1 score

Multilabel classification

lower bound = 0 upper bound = $\left[\mathbb{E}[Y] + \sqrt{\mathbb{V}[Y]}\right]$						
Projection	$[0, 1]^k$	\mathbb{R}^k	$[0, 1]^k$	${\cal K}$		
Decoding	$[0, 1]^k$	${\cal K}$	${\cal K}$	${\cal K}$		
Birds	38.87	37.75	39.21	39.43		
Cal500	34.62	35.86	34.63	34.61		
Emotions	56.60	51.73	53.98	62.57		
Mediamill	56.22	55.35	56.22	54.53		
Scene	61.06	50.33	58.95	69.01		
TMC	60.45	58.61	60.37	60.25		
Yeast	60.24	60.20	60.23	60.06		

 \mathcal{K} : budget polytope

 F_1 score

 We proposed a generic framework for deriving a loss from the projection onto a convex set

- We proposed a generic framework for deriving a loss from the projection onto a convex set
- If its projection is affordable, the marginal polytope is the best convex set

- We proposed a generic framework for deriving a loss from the projection onto a convex set
- If its projection is affordable, the marginal polytope is the best convex set
- If not, any convex superset with cheaper projection can be used (e.g., unit cube)