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Regression analysis

* Variables
y € R: target variable
x € R?: explanatory variables (features)
¢ Training data
y=[y,...,ys|t €R"
X =[x1,...,x,] € RI"

e Goal

o Learn model parameters

o Compute prediction y for a new x
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Linear regression

e Model )
Vir(x;w) = (w, x) = > wx
j=1
e Parameters
w € RY: feature weights

* Pros and cons
© O(d) predictions

© Learning w can be cast as a convex optimization problem

® Does not use feature interactions
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Polynomial regression

e Model

d
Prr(x; W) = (W, x) +x" Wx = (w,x)+ > wjxxp
Jij'=1

e Parameters

w € RY: feature weights
W e R9*?: weight matrix

e Pros and cons

© Learning w and W can be cast as a convex optimization problem

® O(d?) time and memory cost
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Kernel regression

e Model

Vkr(X; @) = Zn: a; KC(x;, x)

i=1

e Parameters

a € R": instance weights

e Pros and cons

© Can use non-linear kernels (RBF, polynomial, etc...)
© Learning a can be cast as a convex optimization problem

® O(dn) predictions (linear dependence on training set size)
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Factorization |\/|achines (FMS) (Rendle, ICDM 2010)

e Model Y it row of P

Jru(x; w, P) = (w., x) + 3 (B}, By )
J'>Jj

o Parameters
w € RY: feature weights
P c RY*: weight matrix

e Pros and cons

© Takes into account feature combinations
© O(2dk) predictions (linear-time) instead of O(d?)

© Parameter estimation involves a non-convex optimization problem



Application 1: recsys without features

e Formulate it as a matrix completion problem

Movie 1 | Movie 2 | Movie 3 | Movie 4
Alice *k 7 * * % 7
Bob * ? ok 7
Charlie ok ? 7 Hok

o Matrix factorization: find U, V that approximately
reconstruct the rating matrix

R~UV"



Conversion to a regression problem

Movie 1 | Movie 2 | Movie 3 | Movie 4
Alice Hok ? N ?
Bob * ? ok ?
Charlie *x ? ? %
ll one-hot encoding
[+x] [1 00 10 0 0]
* % K 1 00 0010
* 0101000 Using this
*% 0100010 representation,
FMs are equivalent
o 0011000 to MF!
Fok 001 0O0O0OT1
\_ _/ — -
y X



Generalization ability of FMs

e The weight of x;x; is (p;, p;) compared to w;; for PR

 The same parameters p; are shared for the weight of
xixj Vj > J'

e This increases the amount of data used to estimate p; at
the cost of introducing some bias (low-rank assumption)

» This allows to generalize to feature interactions that
were not observed in the training set



Application 2: recsys with features

Rating User Movie |
Gender | Age Genre Director
ok M 20-30 | Adventure | S. Spielberg
* Kk x F 0-10 Anime H. Miyazaki
* M 20-30 | Drama | A. Kurosawa

® Interactions between categorical variables

O Gender x genre: {M, F} x {Adventure, Anime, Drama, ...}

O Age X director: {0-10, 10-20, ...} x {S. Spielberg, H. Miyazaki, A. Kurosawa, ...}

® In practice, the number of interactions can be huge!
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Conversion to regression

Ratin User Movie
& | Gender Age Genre Director
ok M 20-30 | Adventure | S. Spielberg
* kK F 0-10 Anime H. Miyazaki
* M 20-30 Drama | A. Kurosawa
|} one-hot encoding
Hok 10001100
* Kk % 01100010 Very sparse
* 10001001 binary datal
N
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FMS reViSited (Blondel+, ICML 2016)

o ANOVA kernel of degree m = 2 (Stitson+, 1997; Vapnik, 1998)

A2 (p, x) = pix; pyxy

J'>j
e Then
Vem(x; w, P) = (w, x) + Z(I_’jal_’j'>XjXJ'
j>j
= (w, x) + Z Az(ps,X)
s=1

1 st column of P
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ANOVA kernel (arbitrary-order case)

o ANOVA kernel of degree 2 < m < d

A"(p,x) = > (PiXi) - (PjnXin)
Jm>>1
1 All possible m-combinations of {1,...,d}

e Intuitively, the kernel uses all m-combinations of features
without replacement: x;, ...x; for j1 # -+ # jn

o Computing A"(p, x) naively takes O(d™) @
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Higher-order FMs (HOFMs)

e Model

k
}/}HOFI\/I(X; w, {Pt}Tz2) = <W7 X> + 22 ZlAt(pga X)
t=2s=
e Parameters
w € RY: feature weights
P2, ..., P™c RY*: weight matrices
e Pros and cons

© Takes into account higher-order feature combinations
© O(dkm?) prediction cost using our proposed algorithms

® More complex than 2nd-order FMs



Learning HOFMs (1/2)

» We use alternating mimimization w.r.t. w, P?, ..., P™
* Learning w alone reduces to linear regression

» Learning P™ can be cast as minimizing

1 k
F(P) = 1 5t (v & A”(psm) + o) + S1PIE

s=1

where o; is the contribution of degrees other than m
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Learning HOFMs (2/2)

» Stochastic gradient update

Ps < Ps — 7751()’/, }A/i)VAm(psa X,') - 775Ps
where 7 is a learning rate hyper-parameter and
k
yi=23_ A"(ps, xi) + o
s=1
» We propose O(dm) (linear time) DP algorithms for

o Evaluating ANOVA kernel A"(p, x) € R

o Computing gradient VA™(p, x) € R?
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Evaluating the ANOVA kernel (1/3)

* Recursion (Blondel+, ICML 2016)
Am(pu X) - Am(p—'p x—\j) + PjXj Am_l(p—w x—\j) v.]

where p_;, x; € R are vectors with the | element
removed

e We can use this recursion to remove features until
computing the kernel becomes trivial
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Evaluating the ANOVA kernel (2/3)

Value we want
Shortout

. a
agt~— plgawlg e
[p17 ceey pj

T Pd Xd

X1 [X17 - XJ] \
ad-1,m ad-1,m-1

Pd-1 Xd-1 W
ad-2m ad-2,m-1 ad-2m-2

Redundant

computation Continue until all

features have been
18 eliminated




Evaluating the ANOVA kernel (3/3)

Ways to avoid redundant computations:
» Top-down approach with memory table

» Bottum-up dynamic programming (DP)

t=20 1 1 1 1 1
t=1 0 Pail ar - ad1
start P2X2
t=2 0 =3 a2 ... ad 2
t=m 0 0 0 dd.m <_goa|
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Algorithm 1 Evaluating A™ (p, ) in O(dm)

Input: p € R?, « € R?
aj: +— 0vte{l,....,m},j€{0,1,...,d}
aj,0<—1\v’j€{0,1,...,d}

fort:=1,...,mdo
forj =t,...,ddo
Ajt < AQj—1,t T+ PjT;Q5—1,t—1
end for
end for

Output: A™(p,x) = ad,m




T ——
Backpropagation (chain rule)

Ex: compute derivatives of composite function f(g(h(p)))

e Forward pass

a = h(p)
b=g(a)
c = f(b)
Only the last part
e Backward pass depends on j
dc  Oc 0b Oa '

_:___:f/b/ h/
55 = b 92 55~ (0 €10) H(P)

Can compute all derivatives in one pass!
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Gradient computation (1/2)

~

» We want to compute VA™(p,x) = [Py, ..., Pd|"

e Using the chain rule, we have

m
=2 3t 311 %]
=3y T9-1t-1%
since p; influences a;; Vt € [m]

e &;+ can be computed recursively in reverse order

djt = dj+1,t T Pj+1Xj+1 dj+1,t+1
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Gradient computation (2/2)

goal |j=1 j=2 ... j=d—-1 j=d
t=1 |31 &1 ... 0 0
t =2 0 o - 0 0

' : ' P dd-1t-1 < 0
t=m 0 0 0 1 deyd\ 1 < start
t=m+1| 0 0 0 0 0
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Algorithm 2 Computing VA™ (p, x) in O(dm)

Input: p € R%, & € RY, {ajt}]t 0

aj: < 0Vt e [m+1],j5 € [d]

dd,m +—1

fort . =m,...,1do
forj=d—-1,...,tdo

Aj,t <= Qjt1,t + Qj41, 04105412541

end for

end for

pj = Z:r;l Gj,taj—1,t—1%; VJ € [d]
Output: VA™ (p,x) = [p1,...,pa)"
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Summary so far

* HOFMs can be expressed using the ANOVA kernel A"

» We proposed O(dm) time algorithms for computing
A"(p, x) and VA" (p, x)

* The cost per epoch of stochastic gradient algorithms for
learning P™ is therefore O(dnkm)

o The prediction cost is O(dkm?)
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Other contributions

» Coordinate-descent algorithm for learning P™ based on a
different recursion

o Cost per epoch is O(dnkm?) @
o However, no learning rate to tune! ©

o HOFMs with shared parameters: P?=...=pm
o Total prediction cost is O(dkm) instead of O(dkm?) ©

o Corresponds to using new kernels derived from the ANOVA kernel
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Experiments



Application to link prediction

Goal: predict missing links between nodes in a graph

O

Graph: Bipartite graph:

.
.
.
.
’
.
’ ;

e Co-author network e User-movie

® Enzyme network ¢ Gene-disease
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Application to link prediction

We assume two sets of nodes A (e.g., users) and B (e.g,
movies) of size na and ng

Nodes in A are represented by feature vectors a; € R%

Nodes in B are represented by feature vectors b; € R%

We are given a matrix Y € {—1,+1}"*"8 such that
yij = +1 if there is a link between a; and b;

Number of positive samples is n.
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Datasets
Dataset | ny Columns of A | g4 da | Columnsof B | ng dg
NIPS 4,140 Authors 2,037 | 13,649
Enzyme 2,994 Enzymes 668 325
GD 3,954 Diseases 3,209 3,209 Genes 12,331 | 25,275
ML 100K | 21,201 Users 943 49 Movies 1,682 29
Features:

® NIPS: word occurence in author publications

® Enzyme: phylogenetic information, gene expression information and
gene location information

® GD: MimMiner similarity scores (diseases) and HumanNet similarity
scores (genes)

e ML 100K: age, gender, occupation, living area (users); release year,
genre (movies)



Models compared

Goal: predict if there is a link between a; and b

vector concatenation

v
HOFM: §;; = Jrorm(a; & bj; w, {P*}[,)
HOFM-shared: same but with P> = ... = P™

Polynomial network (PN): replace ANOVA kernel by
polynomial kernel

Bilinear regression (BLR): y;; = a,-UVTbJ-
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Experimental protocol

We sample n_ = n, negatives samples (missing edges
are treated as negative samples)

We use 50% for training and 50% for testing

We use ROC-AUC (area under ROC curve) for evaluation

£ tuned by CV, k fixed to 30

o P2, ... P" initialized randomly

l is set to the squared loss
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Solver comparison

e Coordinate descent
e AdaGrad
o L-BFGS

AdaGrad and L-BFGS use the proposed DP algorithm to
compute V.A"(p, x)
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