
Higher-order Factorization Machines

Mathieu Blondel
NTT Communication Science Laboratories

Kyoto, Japan

Joint work with M. Ishihata, A. Fujino and
N. Ueda

2016/9/28
1

Regression analysis
• Variables

y ∈ R: target variable
x ∈ Rd : explanatory variables (features)

• Training data

y = [y1, . . . , yn]T ∈ Rn

X = [x1, . . . , xn] ∈ Rd×n

• Goal
◦ Learn model parameters

◦ Compute prediction y for a new x
2

Linear regression

• Model
ŷLR(x; w) := 〈w , x〉 =

d∑
j=1

wjxj

• Parameters
w ∈ Rd : feature weights

• Pros and cons
, O(d) predictions

, Learning w can be cast as a convex optimization problem

/ Does not use feature interactions
3

Polynomial regression
• Model

ŷPR(x; w) := 〈w , x〉+ xTW x = 〈w , x〉+
d∑

j ,j ′=1
wj ,j ′xjxj ′

• Parameters

w ∈ Rd : feature weights
W ∈ Rd×d : weight matrix

• Pros and cons
, Learning w and W can be cast as a convex optimization problem

/ O(d2) time and memory cost
4

Kernel regression

• Model
ŷKR(x; α) :=

n∑
i=1

αiK(x i , x)

• Parameters

α ∈ Rn: instance weights

• Pros and cons
, Can use non-linear kernels (RBF, polynomial, etc...)

, Learning α can be cast as a convex optimization problem

/ O(dn) predictions (linear dependence on training set size)
5

Factorization Machines (FMs) (Rendle, ICDM 2010)

• Model
ŷFM(x; w ,P) := 〈w , x〉+

∑
j ′>j
〈p̄j , p̄j ′〉xjxj ′

• Parameters
w ∈ Rd : feature weights
P ∈ Rd×k : weight matrix

• Pros and cons
, Takes into account feature combinations

, O(2dk) predictions (linear-time) instead of O(d2)

/ Parameter estimation involves a non-convex optimization problem
6

↙
jth row of P

Application 1: recsys without features
• Formulate it as a matrix completion problem

Movie 1 Movie 2 Movie 3 Movie 4
Alice ?? ? ? ? ? ?
Bob ? ? ?? ?

Charlie ?? ? ? ??

• Matrix factorization: find U,V that approximately
reconstruct the rating matrix

R ≈ UV T

7

Conversion to a regression problem
Movie 1 Movie 2 Movie 3 Movie 4

Alice ?? ? ? ? ? ?
Bob ? ? ?? ?

Charlie ?? ? ? ??

⇓ one-hot encoding


??
? ? ?
?
??
??
??


︸ ︷︷ ︸

y



1 0 0 1 0 0 0
1 0 0 0 0 1 0
0 1 0 1 0 0 0
0 1 0 0 0 1 0
0 0 1 1 0 0 0
0 0 1 0 0 0 1


︸ ︷︷ ︸

X
8

Using this
representation,
FMs are equivalent
to MF!

Generalization ability of FMs

• The weight of xjxj ′ is 〈p̄j , p̄j ′〉 compared to wj ,j ′ for PR

• The same parameters p̄j are shared for the weight of
xjxj ′ ∀j > j ′

• This increases the amount of data used to estimate p̄j at
the cost of introducing some bias (low-rank assumption)

• This allows to generalize to feature interactions that
were not observed in the training set

9

Application 2: recsys with features
Rating User Movie

Gender Age Genre Director
?? M 20-30 Adventure S. Spielberg
? ? ? F 0-10 Anime H. Miyazaki
? M 20-30 Drama A. Kurosawa
...

• Interactions between categorical variables
◦ Gender × genre: {M, F} × {Adventure, Anime, Drama, ...}

◦ Age × director: {0-10, 10-20, ...} × {S. Spielberg, H. Miyazaki, A. Kurosawa, ...}

• In practice, the number of interactions can be huge!
10

Conversion to regression

Rating User Movie
Gender Age Genre Director

?? M 20-30 Adventure S. Spielberg
? ? ? F 0-10 Anime H. Miyazaki
? M 20-30 Drama A. Kurosawa
...

⇓ one-hot encoding


??
? ? ?
?
...


︸ ︷︷ ︸

y


1 0 0 0 1 1 0 0 . . .
0 1 1 0 0 0 1 0 . . .
1 0 0 0 1 0 0 1 . . .
...


︸ ︷︷ ︸

X11

very sparse
binary data!

FMs revisited (Blondel+, ICML 2016)

• ANOVA kernel of degree m = 2 (Stitson+, 1997; Vapnik, 1998)

A2(p, x) :=
∑
j ′>j

pjxj pj ′xj ′

• Then

ŷFM(x; w ,P) = 〈w , x〉+
∑
j ′>j
〈p̄j , p̄j ′〉xjxj ′

= 〈w , x〉+
k∑

s=1
A2(ps , x)

12

↑ sth column of P

ANOVA kernel (arbitrary-order case)

• ANOVA kernel of degree 2 ≤ m ≤ d

Am(p, x) :=
∑

jm>···>j1
(pj1xj1) . . . (pjmxjm)

• Intuitively, the kernel uses all m-combinations of features
without replacement: xj1 . . . xjm for j1 6= · · · 6= jm

• Computing Am(p, x) naively takes O(dm) /

13

↑ All possible m-combinations of {1, . . . , d}

Higher-order FMs (HOFMs)
• Model

ŷHOFM(x; w , {P t}m
t=2) := 〈w , x〉+

m∑
t=2

k∑
s=1
At(pt

s , x)

• Parameters
w ∈ Rd : feature weights
P2, . . . ,Pm ∈ Rd×k : weight matrices

• Pros and cons
, Takes into account higher-order feature combinations

, O(dkm2) prediction cost using our proposed algorithms

/ More complex than 2nd-order FMs14

Learning HOFMs (1/2)

• We use alternating mimimization w.r.t. w , P2, ..., Pm

• Learning w alone reduces to linear regression

• Learning Pm can be cast as minimizing

F (P) := 1
n

n∑
i=1

`

yi ,
k∑

s=1
Am(ps , x i) + oi

 + β

2‖P‖
2

where oi is the contribution of degrees other than m

15

Learning HOFMs (2/2)

• Stochastic gradient update

ps ← ps − η`′(yi , ŷi)∇Am(ps , x i)− ηβps

where η is a learning rate hyper-parameter and
ŷi :=

k∑
s=1
Am(ps , x i) + oi

• We propose O(dm) (linear time) DP algorithms for
◦ Evaluating ANOVA kernel Am(p, x) ∈ R

◦ Computing gradient ∇Am(p, x) ∈ Rd

16

Evaluating the ANOVA kernel (1/3)

• Recursion (Blondel+, ICML 2016)

Am(p, x) = Am(p¬j , x¬j) + pjxj Am−1(p¬j , x¬j) ∀j

where p¬j , x¬j ∈ Rd−1 are vectors with the jth element
removed

• We can use this recursion to remove features until
computing the kernel becomes trivial

17

Evaluating the ANOVA kernel (2/3)

ad,m

ad-1,m ad-1,m-1

+
pd xd

ad-2,m ad-2,m-1

+

ad-2,m-2

+
pd-1 xd-1pd-1 xd-1

… …

Value we want  
to compute

Redundant 
computation

algorithm was provided, [4] showed based on (7) that, although non-convex, the objective function of
arbitrary-order HOFMs is convex in w and in each row of P (2), . . . ,P (m), separately.

Interpretability of HOFMs. An advantage of FMs and HOFMs is their interpretability. To see why
this is the case, notice that we can rewrite (3) as

ŷHOFM(x) = hw,xi+
X

j0>j

W(2)
j,j0xjxj0 + · · ·+

X

jm>···>j1

W(m)
j1,...,jm

xj1xj2 . . . xjm ,

where we defined W(t)
:

=

Pk
s=1 p

(t)
s ⌦ · · ·⌦ p

(t)
s| {z }

t times

. Intuitively, W(t) 2 Rdt

is a low-rank t-way

tensor which contains the weights of feature combinations of degree t. For instance, when t = 3,
W(3)

i,j,k is the weight of xixjxk. Similarly to the ANOVA decomposition of functions, HOFMs
consider only combinations of distinct features.

This paper. Unfortunately, there exists to date no efficient algorithm for training arbitrary-order
HOFMs. Indeed, computing (5) naively takes O(dm), i.e., polynomial time. In the following, we
present linear-time algorithms. Moreover, HOFMs, as originally defined in [12, 13] require the
estimation of m� 1 matrices P (2), . . . ,P (m). Thus, HOFMs can produce large models when m is
large. To address this issue, we propose new variants of HOFMs with shared parameters.

3 Linear-time stochastic gradient algorithms for HOFMs

The kernel view presented in Section 2 allows us to focus on the ANOVA kernel as the main
“computational unit” for training HOFMs. In this section, we develop dynamic programming (DP)
algorithms for evaluating it and computing its gradient in only O(dm) time, i.e., linear time.

Evaluation. The main observation is that we can use (7) to recursively remove features until
computing the kernel becomes trivial. Let us denote a subvector of p by p1:j 2 Rj and similarly for
x. Furthermore, let us introduce the shorthand aj,t := At

(p1:j ,x1:j). Then we have that
8
<

:

aj,0 = 1 if j � 0

aj,t = 0 if j < t

aj,t = aj�1,t + pjxj aj�1,t�1 otherwise.
(8)

Table 1: Example of DP table
j = 0 j = 1 j = 2 . . . j = d

t = 0 1 1 1 1 1
t = 1 0 a1,1 a2,1 . . . ad,1

t = 2 0 0 a2,2 . . . ad,2

...
...

...
...

. . .
...

t = m 0 0 0 . . . ad,m

The quantity we want to compute is Am
(p,x) = ad,m.

Instead of naively using the above recursion, which
would lead to many redundant computations, we use
a bottom-up approach and organize computations in a
DP table. We start from the top-left corner to initialize
the recursion and go through the table to arrive at the
solution in the bottom-right corner. The procedure, sum-
marized in Algorithm 1, takes O(dm) time and memory.

Gradients. For computing the gradient of Am
(p,x) w.r.t. p, we use reverse-mode differentiation

[2] (a.k.a. backpropagation in a neural network context), since it allows us to compute the entire
gradient in a single pass. We supplement each variable aj,t in the DP table by a so-called adjoint
ãj,t :=

@ad,m

@aj,t
, which represents the sensitivity of ad,m = Am

(p,x) w.r.t. aj,t. From recursion (8),
except for edge cases, aj,t influences aj+1,t+1 and aj+1,t. Using the chain rule, we then obtain

ãj,t =
@ad,m
@aj+1,t

@aj+1,t

@aj,t
+

@ad,m
@aj+1,t+1

@aj+1,t+1

@aj,t
= ãj+1,t + pj+1xj+1 ãj+1,t+1. (9)

Similarly, we introduce the adjoint p̃j :=
@ad,m

@pj
8j 2 [d]. Since pj influences aj,t 8t 2 [m], we have

p̃j =

mX

t=1

@ad,m
@aj,t

@aj,t
@pj

=

mX

t=1

ãj,t aj�1,t�1 xj .

We can run recursion (9) in reverse order of the DP table (i.e., top-down) starting from ãd,m = 1.
Using this approach, we can compute the entire gradient rAm

(p,x) = [p̃1, . . . , p̃d]
T w.r.t. p in

O(dm) time and memory. The procedure is summarized in Algorithm 2.

3

Shortcut:

Continue until all 
features have been

eliminated

…

18

p1:j := [p1, . . . , pj]T

x1:j := [x1, . . . , xj]T

Evaluating the ANOVA kernel (3/3)
Ways to avoid redundant computations:
• Top-down approach with memory table

• Bottum-up dynamic programming (DP)

j = 0 j = 1 j = 2 . . . j = d
t = 0 1 1 1 1 1
t = 1 0 a1,1 a2,1 . . . ad ,1

t = 2 0 0 a2,2 . . . ad ,2
...

t = m 0 0 0 . . . ad ,m
19

↘p2x2

→

← goal

start
�

Algorithm 1 Evaluating Am(p, x) in O(dm)

Input: p 2 Rd, x 2 Rd

aj,t 0 8t 2 {1, . . . , m}, j 2 {0, 1, . . . , d}
aj,0 1 8j 2 {0, 1, . . . , d}

for t := 1, . . . , m do
for j := t, . . . , d do

aj,t aj�1,t + pjxjaj�1,t�1

end for
end for

Output: Am(p, x) = ad,m

Algorithm 2 ComputingrAm(p, x) in O(dm)

Input: p 2 Rd, x 2 Rd, {aj,t}d,m
j,t=0

ãj,t 0 8t 2 {0, 1, . . . , m}, j 2 {0, 1, . . . , d}
ãd,m 1
for t := m, . . . , 1 do

for j := d, . . . , t do
ãj,t ãj+1,t+1pj+1xj+1 if j < d, t < m
ãj,t ãj,t + ãj+1,t if j < d

end for
end for
p̃j :=

Pm
t=1 ãj,taj�1,t�1xj 8j 2 [d]

Output: rAm(p, x) = [p̃1, . . . , p̃d]T

Stochastic gradient (SG) algorithms. Based on Algorithm 1 and 2, we can easily learn arbitrary-
order HOFMs using any gradient-based optimization algorithm. Here we focus our discussion on SG
algorithms. If we alternatingly minimize (4) w.r.t P (2), . . . , P (m), then the sub-problem associated
with degree m is of the form

F (P) :=
1

n

nX

i=1

`

yi,

kX

s=1

Am(ps, xi) + oi

!
+

�

2
kP k2, (10)

where o1, . . . , on 2 R are fixed offsets which account for the contribution of degrees other than m
to the predictions. The sub-problem is convex in each row of P . A SG update for (10) w.r.t. ps
for some instance xi can be computed by ps ps � ⌘`0(yi, ŷi)rAm(ps, xi)� ⌘�ps, where ⌘ is
a learning rate and where we defined ŷi :=

Pk
s=1 Am(ps, xi) + oi. Because evaluating Am(p, x)

and computing its gradient both take O(dm), the cost per epoch, i.e., of visiting all instances, is
O(mdkn). When m = 2, this is the same cost as the SG algorithm implemented in libfm.

Sparse data. We conclude this section with a few useful remarks on sparse data. Let us denote
the support of a vector x = [x1, . . . , xd]

T by supp(x) := {j 2 [d] : xj 6= 0} and let us define
xS := [xj : j 2 S]T. It is easy to see from (7) that the gradient and x have the same support, i.e.,
supp(rAm(p, x)) = supp(x). Another useful remark is that Am(p, x) = Am(psupp(x), xsupp(x)),
provided that m  nz(x), where nz(x) is the number of non-zero elements in x. Hence, when the
data is sparse, we only need to iterate over non-zero features in Algorithm 1 and 2. Consequently,
their time and memory cost is only O(nz(x)m) and thus the cost per epoch of SG algorithms is
O(mknz(X)).

4 Coordinate descent algorithm for arbitrary-order HOFMs

We now describe a coordinate descent (CD) solver for arbitrary-order HOFMs. CD is a good choice
for learning HOFMs because their objective function is coordinate-wise convex, thanks to the multi-
linearity of the ANOVA kernel. Our algorithm can be seen as a generalization to higher orders of the
CD algorithms proposed in [13, 4].

An alternative recursion. Efficient CD implementations typically require maintaining statistics for
each training instance, such as the predictions at the current iteration. When a coordinate is updated,
the statistics then need to be synchronized. Unfortunately, the recursion we used in the previous
section is not suitable for a CD algorithm because it would require to store and synchronize the DP
table for each training instance upon coordinate-wise updates. We therefore turn to an alternative
recursion:

Am(p, x) =
1

m

mX

t=1

(�1)t+1Am�t(p, x)Dt(p, x), (11)

where we defined Dt(p, x) :=
Pd

j=1(pjxj)
t. Note that the recursion was already known in the

context of traditional kernel methods (c.f., [18, Section 11.8]) but its application to HOFMs is novel.
Since we know that A0(p, x) = 1 and A1(p, x) = hp, xi, we can use (11) to compute A2(p, x),
then A3(p, x), and so on. The overall evaluation cost for arbitrary m 2 N is O(md + m2).

4

20

Backpropagation (chain rule)
Ex: compute derivatives of composite function f (g(h(p)))
• Forward pass

a = h(p)
b = g(a)
c = f (b)

• Backward pass

∂c
∂pj

= ∂c
∂b

∂b
∂a

∂a
∂pj

= f ′(b) g ′(a) h′j(p)

21

↓

Only the last part
depends on j

Can compute all derivatives in one pass!

Gradient computation (1/2)
• We want to compute ∇Am(p, x) = [p̃1, . . . , p̃d]T

• Using the chain rule, we have

p̃j := ∂ad ,m

∂pj
=

m∑
t=1

∂ad ,m

∂aj ,t︸ ︷︷ ︸
:=ãj,t

∂aj ,t

∂pj︸ ︷︷ ︸
=aj−1,t−1xj

=
m∑

t=1
ãj ,t aj−1,t−1 xj

since pj influences aj ,t ∀t ∈ [m]

• ãj ,t can be computed recursively in reverse order

ãj ,t = ãj+1,t + pj+1xj+1 ãj+1,t+1
22

Gradient computation (2/2)

j = 1 j = 2 . . . j = d − 1 j = d
t = 1 ã1,1 ã2,1 . . . 0 0
t = 2 0 ã2,2

. . . 0 0
... ãd−1,t−1 0

t = m 0 0 0 1 1
t = m + 1 0 0 0 0 0

23

↖
←

pd xd

↘
goal

← start

Algorithm 1 Evaluating Am(p, x) in O(dm)

Input: p 2 Rd, x 2 Rd

aj,t 0 8t 2 [m], j 2 [d] [{0}
aj,0 1 8j 2 [d] [{0}

for t := 1, . . . , m do
for j := t, . . . , d do

aj,t aj�1,t + pjxjaj�1,t�1

end for
end for

Output: Am(p, x) = ad,m

Algorithm 2 ComputingrAm(p, x) in O(dm)

Input: p 2 Rd, x 2 Rd, {aj,t}d,m
j,t=0

ãj,t 0 8t 2 [m + 1], j 2 [d]
ãd,m 1

for t := m, . . . , 1 do
for j := d� 1, . . . , t do

ãj,t ãj+1,t + ãj+1,t+1pj+1xj+1

end for
end for
p̃j :=

Pm
t=1 ãj,taj�1,t�1xj 8j 2 [d]

Output: rAm(p, x) = [p̃1, . . . , p̃d]T

Stochastic gradient (SG) algorithms. Based on Algorithm 1 and 2, we can easily learn arbitrary-
order HOFMs using any gradient-based optimization algorithm. Here we focus our discussion on SG
algorithms. If we alternatingly minimize (4) w.r.t P (2), . . . , P (m), then the sub-problem associated
with degree m is of the form

F (P) :=
1

n

nX

i=1

`

yi,

kX

s=1

Am(ps, xi) + oi

!
+

�

2
kP k2, (10)

where o1, . . . , on 2 R are fixed offsets which account for the contribution of degrees other than m
to the predictions. The sub-problem is convex in each row of P . A SG update for (10) w.r.t. ps
for some instance xi can be computed by ps ps � ⌘`0(yi, ŷi)rAm(ps, xi)� ⌘�ps, where ⌘ is
a learning rate and where we defined ŷi :=

Pk
s=1 Am(ps, xi) + oi. Because evaluating Am(p, x)

and computing its gradient both take O(dm), the cost per epoch, i.e., of visiting all instances, is
O(mdkn). When m = 2, this is the same cost as the SG algorithm implemented in libfm.

Sparse data. We conclude this section with a few useful remarks on sparse data. Let us denote
the support of a vector x = [x1, . . . , xd]

T by supp(x) := {j 2 [d] : xj 6= 0} and let us define
xS := [xj : j 2 S]T. It is easy to see from (7) that the gradient and x have the same support, i.e.,
supp(rAm(p, x)) = supp(x). Another useful remark is that Am(p, x) = Am(psupp(x), xsupp(x)),
provided that m  nz(x), where nz(x) is the number of non-zero elements in x. Hence, when the
data is sparse, we only need to iterate over non-zero features in Algorithm 1 and 2. Consequently,
their time and memory cost is only O(nz(x)m) and thus the cost per epoch of SG algorithms is
O(mknz(X)).

4 Coordinate descent algorithm for arbitrary-order HOFMs

We now describe a coordinate descent (CD) solver for arbitrary-order HOFMs. CD is a good choice
for learning HOFMs because their objective function is coordinate-wise convex, thanks to the multi-
linearity of the ANOVA kernel. Our algorithm can be seen as a generalization to higher orders of the
CD algorithms proposed in [13, 4].

An alternative recursion. Efficient CD implementations typically require maintaining statistics for
each training instance, such as the predictions at the current iteration. When a coordinate is updated,
the statistics then need to be synchronized. Unfortunately, the recursion we used in the previous
section is not suitable for a CD algorithm because it would require to store and synchronize the DP
table for each training instance upon coordinate-wise updates. We therefore turn to an alternative
recursion:

Am(p, x) =
1

m

mX

t=1

(�1)t+1Am�t(p, x)Dt(p, x), (11)

where we defined Dt(p, x) :=
Pd

j=1(pjxj)
t. Note that the recursion was already known in the

context of traditional kernel methods (c.f., [18, Section 11.8]) but its application to HOFMs is novel.
Since we know that A0(p, x) = 1 and A1(p, x) = hp, xi, we can use (11) to compute A2(p, x),
then A3(p, x), and so on. The overall evaluation cost for arbitrary m 2 N is O(md + m2).

4

24

Summary so far

• HOFMs can be expressed using the ANOVA kernel Am

• We proposed O(dm) time algorithms for computing
Am(p, x) and ∇Am(p, x)

• The cost per epoch of stochastic gradient algorithms for
learning Pm is therefore O(dnkm)

• The prediction cost is O(dkm2)

25

Other contributions

• Coordinate-descent algorithm for learning Pm based on a
different recursion
◦ Cost per epoch is O(dnkm2) /

◦ However, no learning rate to tune! ,

• HOFMs with shared parameters: P2 = · · · = Pm

◦ Total prediction cost is O(dkm) instead of O(dkm2) ,

◦ Corresponds to using new kernels derived from the ANOVA kernel

26

Experiments

27

Application to link prediction
Goal: predict missing links between nodes in a graph

?

?

Graph:

• Co-author network

• Enzyme network

?

?

Bipartite graph:

• User-movie

• Gene-disease
28

Application to link prediction

• We assume two sets of nodes A (e.g., users) and B (e.g,
movies) of size nA and nB

• Nodes in A are represented by feature vectors ai ∈ RdA

• Nodes in B are represented by feature vectors bj ∈ RdB

• We are given a matrix Y ∈ {−1,+1}nA×nB such that
yi ,j = +1 if there is a link between ai and bj

• Number of positive samples is n+

29

Datasets
Dataset n+ Columns of A nA dA Columns of B nB dB

NIPS 4,140 Authors 2,037 13,649
Enzyme 2,994 Enzymes 668 325

GD 3,954 Diseases 3,209 3,209 Genes 12,331 25,275
ML 100K 21,201 Users 943 49 Movies 1,682 29

Features:
• NIPS: word occurence in author publications

• Enzyme: phylogenetic information, gene expression information and
gene location information

• GD: MimMiner similarity scores (diseases) and HumanNet similarity
scores (genes)

• ML 100K: age, gender, occupation, living area (users); release year,
genre (movies)30

Models compared

Goal: predict if there is a link between ai and bj

• HOFM: ŷi ,j = ŷHOFM(ai ⊕ bj ; w , {P t}m
t=2)

• HOFM-shared: same but with P2 = · · · = Pm

• Polynomial network (PN): replace ANOVA kernel by
polynomial kernel

• Bilinear regression (BLR): ŷi ,j = aiUV Tbj

31

↙
vector concatenation

Experimental protocol

• We sample n− = n+ negatives samples (missing edges
are treated as negative samples)

• We use 50% for training and 50% for testing

• We use ROC-AUC (area under ROC curve) for evaluation

• β tuned by CV, k fixed to 30

• P2, . . . ,Pm initialized randomly

• ` is set to the squared loss

32

HOFM HOFM-shared PN BLR
0.70

0.75

0.80

0.85

0.90

A
U

C

m=2

m=3

m=4

m=5

(a) NIPS

HOFM HOFM-shared PN BLR
0.60

0.65

0.70

0.75

0.80

0.85

0.90

A
U

C

m=2

m=3

m=4

m=5

(b) Enzyme

HOFM HOFM-shared PN BLR
0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

A
U

C

m=2

m=3

m=4

m=5

(c) GD

HOFM HOFM-shared PN BLR

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

A
U

C

m=2

m=3

m=4

m=5

(d) ML100K33

Solver comparison

• Coordinate descent

• AdaGrad

• L-BFGS

AdaGrad and L-BFGS use the proposed DP algorithm to
compute ∇Am(p, x)

34

100 101 102 103

CPU time (seconds)

10-3

10-2

10-1

100

101

O
b
je

ct
iv

e
 v

a
lu

e
 m

in
u
s

b
e
st

CD

AdaGrad

L-BFGS

(a) Convergence when m = 2

100 101 102 103 104

CPU time (seconds)

10-3

10-2

10-1

100

101

O
b
je

ct
iv

e
 v

a
lu

e
 m

in
u
s

b
e
st

CD

AdaGrad

L-BFGS

(b) Convergence when m = 3

100 101 102 103 104

CPU time (seconds)

10-3

10-2

10-1

100

101

O
b
je

ct
iv

e
 v

a
lu

e
 m

in
u
s

b
e
st

CD

AdaGrad

L-BFGS

(c) Convergence when m = 4

2 3 4 5
Degree m

0

50

100

150

200

250

300

350

T
im

e
 t

o
 c

o
m

p
le

te
 o

n
e
 e

p
o
ch

 (
se

c.
)

CD

AdaGrad

L-BFGS

(d) Scalability w.r.t. m35

NIPS dataset

