Structured Attention & Differentiable Dynamic Programming

Mathieu Blondel Staff Research Scientist NTT, Kyoto, Japan

January 4th, 2019

Outline

1. Structured attention

2. Differentiable dynamic programming

Outline

Outline

1. Structured attention

2. Differentiable dynamic programming

$$H = \operatorname{encode}(W)$$

$$W = lookup(words)$$

$$\theta_t = Hq_{t-1}$$
 # attn scores
 $p_t = \mathbf{Softmax}(\theta_t)$ # attn proba
 $a_t = p_t^{\mathsf{T}}H$ # aggregated vector

$$H = \operatorname{encode}(W)$$

$$W = lookup(words)$$

$$q_t = \text{decode}(a_t, y_{t-1}, q_{t-1})$$

$$\theta_t = Hq_{t-1}$$
 # attn scores
 $p_t = \mathbf{Softmax}(\theta_t)$ # attn proba
 $a_t = p_t^{\mathsf{T}}H$ # aggregated vector

$$H = \operatorname{encode}(W)$$

$$W = lookup(words)$$

$$y_t = Mq_t + b$$

$$q_t = \text{decode}(a_t, y_{t-1}, q_{t-1})$$

$$\theta_t = Hq_{t-1}$$
 # attn scores
 $p_t = \mathbf{softmax}(\theta_t)$ # attn proba
 $a_t = p_t^T H$ # aggregated vector

$$H = \operatorname{encode}(W)$$

$$W = lookup(words)$$

$$y_t = Mq_t + b$$

$$q_t = \text{decode}(a_t, y_{t-1}, q_{t-1})$$

$$\theta_t = Hq_{t-1}$$
 # attn scores
 $p_t = \mathbf{softmax}(\theta_t)$ # attn proba
 $a_t = p_t^T H$ # aggregated vector

$$H = \operatorname{encode}(W)$$

$$W = lookup(words)$$

$$y_t = Mq_t + b$$

$$q_t = \text{decode}(a_t, y_{t-1}, q_{t-1})$$

 $\theta_t = Hq_{t-1}$ # attn scores $p_t = \mathbf{softmax}(\theta_t)$ # attn proba $a_t = p_t^T H$ # aggregated vector

$$H = \operatorname{encode}(W)$$

$$W = lookup(words)$$

$$\mathbf{softmax}(\theta) \triangleq \frac{\exp(\theta)}{\sum_{i=1}^{m} \exp(\theta_i)}$$

Sparsemax attention

Sparsemax attention

Sparsemax attention

Martins & Astudillo, ICML, 2016

Fusedmax attention (proposed)

Fusedmax attention (proposed)

•A principled framework for **differentiable argmax** operators

- A principled framework for **differentiable argmax** operators
 - Recovers softmax and sparsemax as special cases

- •A principled framework for **differentiable argmax** operators
 - Recovers softmax and sparsemax as special cases
 - Enables to construct new operators easily

- •A principled framework for **differentiable argmax** operators
 - Recovers softmax and sparsemax as special cases
 - Enables to construct new operators easily
- Efficient **forward** and **backward** computations for **fusedmax**

- A principled framework for **differentiable argmax** operators
 - Recovers softmax and sparsemax as special cases
 - Enables to construct new operators easily
- Efficient **forward** and **backward** computations for **fusedmax**
- Extensive experiments on NMT and sentence summarization

 $i^{\star} \in \underset{i \in [m]}{\operatorname{arg\,max}} \theta_i$

Function from

$$R^{m}$$
 to { $e_{1}, ..., e_{m}$ }

argmax(θ) $\triangleq e_{i^{\star}}$

 $i^{\star} \in \arg \max \theta_{i}$

 $i \in [m]$

One-hot representation
of integer argmax

$\operatorname{argmax}(\theta) = \operatorname{argmax} \langle p, \theta \rangle$ $_{p \in \{e_1, \dots, e_m\}}$

 $\operatorname{argmax}(\theta) = \operatorname{arg max} \langle p, \theta \rangle$ $p \in \{e_1, \dots, e_m\}$ $= \operatorname{arg max} \langle p, \theta \rangle$ $p \in \Delta^m$

Unregularized

argmax([*t*,0])₁

Examples

Examples

Fusedmax attention

$$fusedmax(\theta) = argmax_{\Omega}(\theta)$$

Niculae & Blondel, NIPS 2017

Fused Lasso (a.k.a. 1d total variation)

$$\mathbf{prox}_{TV}(x) \triangleq \arg\min_{y \in \mathbb{R}^{m}} \|x - y\|^{2} + \lambda \sum_{i=1}^{m-1} |y_{i+1} - y_{i}|$$

Total variation signal denoising

Fusedmax attention

Fusedmax attention

How to compute forward and backward passes?

How to compute forward and backward passes?

Proposition (Niculae & Blondel, 2017)

fusedmax = sparsemax \circ prox_{TV}

How to compute forward and backward passes?

Proposition (Niculae & Blondel, 2017) all regularizers!

fusedmax = sparsemax \circ prox_{TV}

How to compute forward and backward passes?

Proposition (Niculae & Blondel, 2017)

Not true for all regularizers!

$fusedmax = sparsemax \circ prox_{TV}$

	sparsemax	prox _{TV}
forward	Michelot, 1986	Condat, 2013
backward (Jacobian)	Martins & Atstudillo, 2016	?

Jacobian of \mathbf{prox}_{TV}

Jacobian of **prox**_{TV}

Jacobian of **prox**_{TV}

Oscarmax attention

Neural Machine Translation

Romanian-English

Experiments based on Open-NMT using WMT16 dataset

Neural Machine Translation

Sentence summarization

Sentence summarization

Experiments based on Open-NMT using the Gigaword sentence summarization dataset

Sentence summarization

. Greatly enhanced interpretability

Experiments based on Open-NMT using the Gigaword sentence summarization dataset

Summary so far

Principled framework for differentiable argmax operators

$$\operatorname{argmax}_{\Omega}(\theta) \triangleq \operatorname{argmax}_{p \in \Delta^m} \langle p, \theta \rangle - \Omega(p)$$

mechanism	regularization Ω
softmax	Shannon's neg-entropy
sparsemax	squared norm
fusedmax	squared norm + fused lasso

Great accuracy on various applications

New interpretable attention mechanisms

Faster training by leveraging sparsity

attention	time per epoch
softmax sparsemax	$\begin{array}{l} 1h\ 26m\ 40s\pm 51s\\ 1h\ 24m\ 21s\pm 54s \end{array}$
fusedmax oscarmax	$\begin{array}{l} 1h\ 23m\ 58s\ \pm\ 50s\\ 1h\ 23m\ 19s\ \pm\ 50s \end{array}$

Outline

1. Structured attention

2. Differentiable dynamic programming

one path in the DAG = one possible tag sequence

one path in the DAG = one possible tag sequence

one path in the DAG = one possible tag sequence

Soft DTW: time series alignment

DTW = Dynamic Time Warping [Sakoe & Chiba, 1978]

×

Soft DTW: time series alignment

DTW = Dynamic Time Warping [Sakoe & Chiba, 1978]

one path in the DAG

=

one possible monotonic time-series alignment
Soft DTW: time series alignment

DTW = Dynamic Time Warping [Sakoe & Chiba, 1978]

one path in the DAG

-

one possible monotonic time-series alignment

Expected Alignment (Path)

Entropic regularization (Cuturi & Blondel, 2017)

Hard solution (DTW alignment)

Soft solution (**expected alignment** $\mathbb{E}_{p}[Y]$)

Expected Alignment (Path)

Entropic regularization (Cuturi & Blondel, 2017) Quadratic regularization (Mensch & Blondel, 2018)

Hard solution (DTW alignment)

Soft solution (**expected alignment** $\mathbb{E}_{p}[Y]$)

$\mathbf{MAP}(\theta) \triangleq \arg \max \langle y, \theta \rangle = \arg \max \langle y, \theta \rangle$ $y \in \mathscr{Y} \subseteq \mathbb{R}^{m} \qquad y \in \operatorname{conv}(\mathscr{Y})$

Can be computed efficiently by dynamic programming in the case of DAGs (no cycle)

Can be computed efficiently by dynamic programming in the case of DAGs (no cycle)

 $MAP(\theta)$ is a discontinuous function

Bellman's recursion

DP value and optimality

DP value and optimality

Maintaining back pointers

Backtracking

Optimal path equals $MAP(\theta) = \arg \max_{y \in \mathcal{Y} \subseteq \mathbb{R}^m} \langle y, \theta \rangle$

Gibbs distribution

$$\mathbf{marginal}(\theta) \triangleq \mathbb{E}_p[Y] \quad p = \mathbf{softmax}\left((\langle y, \theta \rangle)_{y \in \mathscr{Y}}\right) \in \Delta^{|\mathscr{Y}|}$$

Marginal polytope (Wainwright & Jordan, 2008)

$$\mathbf{marginal}(\theta) \triangleq \mathbb{E}_p[Y] \quad p = \mathbf{softmax}\left((\langle y, \theta \rangle)_{y \in \mathscr{Y}}\right) \in \Delta^{|\mathscr{Y}|}$$

Differentiable but completely dense

(always in the interior of the polytope)

Marginal polytope (Wainwright & Jordan, 2008)

Gibbs distribution $\mathbf{marginal}(\theta) \triangleq \mathbb{E}_p[Y] \qquad p = \mathbf{softmax} \left((\langle y, \theta \rangle)_{y \in \mathscr{Y}} \right) \in \Delta^{|\mathscr{Y}|}$

Marginal polytope (Wainwright & Jordan, 2008) Differentiable but completely dense

(always in the interior of the polytope)

Computation: change semiring

$$x \to e^x \pmod{(\max, +)} \to (+, \times)$$

Gibbs distribution $\mathbf{marginal}(\theta) \triangleq \mathbb{E}_p[Y] \qquad p = \mathbf{softmax}\left((\langle y, \theta \rangle)_{y \in \mathscr{Y}}\right) \in \Delta^{|\mathscr{Y}|}$

Marginal polytope (Wainwright & Jordan, 2008) **Differentiable but completely dense** (always in the interior of the polytope)

Computation: change semiring

 $x \to e^x \pmod{(\max, +)} \to (+, \times)$

- Viterbi → Forward-Backward
- CKY → Inside-Outside
- DTW → Soft-DTW

max-sum \rightarrow sum-product (BP)

$$\mathbf{marginal}_{\mathbf{\Omega}}(\theta) \triangleq \mathbb{E}_{p}[Y] \quad p = \mathbf{argmax}_{\mathbf{\Omega}}\left((\langle y, \theta \rangle)_{y \in \mathscr{Y}}\right) \in \Delta^{|\mathscr{Y}|}$$

$$\mathbf{marginal}_{\Omega}(\theta) \triangleq \mathbb{E}_{p}[Y] \quad p = \mathbf{argmax}_{\Omega}\left((\langle y, \theta \rangle)_{y \in \mathscr{Y}}\right) \in \Delta^{|\mathscr{Y}|}$$

$$\mathbf{marginal}_{\Omega}(\theta) \triangleq \mathbb{E}_{p}[Y] \quad p = \mathbf{argmax}_{\Omega}\left((\langle y, \theta \rangle)_{y \in \mathscr{Y}}\right) \in \Delta^{|\mathscr{Y}|}$$

Can we use
$$\Omega(p) = \frac{1}{2} ||p||^2$$
 ?

No longer a semiring change in general

$$\mathbf{marginal}_{\Omega}(\theta) \triangleq \mathbb{E}_{p}[Y] \quad p = \mathbf{argmax}_{\Omega}\left((\langle y, \theta \rangle)_{y \in \mathscr{Y}}\right) \in \Delta^{|\mathscr{Y}|}$$

Can we use
$$\Omega(p) = \frac{1}{2} ||p||^2$$
 ?

No longer a semiring change in general

Difficult to compute exactly

Based on the novel viewpoint of smoothed max operators

• Based on the novel viewpoint of **smoothed max operators**

•Works for any **shortest path** problem over a **DAG**

• Based on the novel viewpoint of **smoothed max operators**

•Works for any **shortest path** problem over a **DAG**

• Enjoys **same big-O complexity** as regular DP

- Based on the novel viewpoint of **smoothed max operators**
- •Works for any **shortest path** problem over a **DAG**
- Enjoys **same big-O complexity** as regular DP
- •Sparse solutions when using quadratic regularization

- Based on the novel viewpoint of **smoothed max operators**
- •Works for any **shortest path** problem over a **DAG**
- Enjoys **same big-O complexity** as regular DP
- •Sparse solutions when using quadratic regularization
- Probabilistic interpretation

- Based on the novel viewpoint of **smoothed max operators**
- •Works for any **shortest path** problem over a **DAG**
- Enjoys **same big-O complexity** as regular DP
- •Sparse solutions when using quadratic regularization
- Probabilistic interpretation
- •Unified and numerically stable implementation (computations directly in log-domain!)

Recall the definition of differentiable argmax operator

$$\operatorname{argmax}_{\Omega}(\theta) \triangleq \operatorname{argmax}_{p \in \Delta^{m}} \langle p, \theta \rangle - \Omega(p) \in \Delta^{m}$$

Recall the definition of differentiable argmax operator

$$\operatorname{argmax}_{\Omega}(\theta) \triangleq \operatorname{argmax}_{p \in \Delta^{m}} \langle p, \theta \rangle - \Omega(p) \in \Delta^{m}$$

Similarly we define the smoothed max operator (Nesterov, 2005)

$$\max_{\Omega}(\theta) \triangleq \max_{p \in \Delta^m} \langle p, \theta \rangle - \Omega(p) \in \mathbb{R}$$

Recall the definition of differentiable argmax operator

$$\operatorname{argmax}_{\Omega}(\theta) \triangleq \operatorname{argmax}_{p \in \Delta^{m}} \langle p, \theta \rangle - \Omega(p) \in \Delta^{m}$$

Similarly we define the smoothed max operator (Nesterov, 2005)

$$\max_{\Omega}(\theta) \triangleq \max_{p \in \Delta^m} \langle p, \theta \rangle - \Omega(p) \in \mathbb{R}$$

From the duality between smoothness and strong convexity

Strongly convex Ω over Δ \Leftrightarrow Smooth max_{\Omega}

Examples

$$\max_{\Omega}(\theta) \triangleq \max_{p \in \Delta^m} \langle p, \theta \rangle - \Omega(p)$$

Unregularized

 $\Omega(p) = 0$

Examples

$$\max_{\Omega}(\theta) \triangleq \max_{p \in \Delta^m} \langle p, \theta \rangle - \Omega(p)$$

Shannon (negative) entropy

Unregularized

Examples

$$\max_{\Omega}(\theta) \triangleq \max_{p \in \Delta^m} \langle p, \theta \rangle - \Omega(p)$$

Smoothed Bellman's recursion

Smoothed DP value

Smoothed DP value

Probabilistic backpointers

Random walk

Random walk (finite Markov chain) defines a distribution p over paths

Each time step t has its own transition matrix $Q_t \in \mathbb{R}^{S imes S}$

Random walk

Each time step t has its own transition matrix $Q_t \in \mathbb{R}^{S \times S}$

Gradient = Expected path

Proposition (Mensch & Blondel, 2018) (See also Eisner, 2016)

$$\nabla \mathrm{DP}_{\mathbf{\Omega}}(\theta) = \mathbb{E}_p[Y] \in \mathrm{conv}(\mathcal{Y})$$

Gradient = Expected path

Proposition (Mensch & Blondel, 2018) (See also Eisner, 2016)

$$\nabla \mathrm{DP}_{\mathbf{\Omega}}(\theta) = \mathbb{E}_p[Y] \in \mathrm{conv}(\mathcal{Y})$$

Can compute $\mathbb{E}_p[Y]$ at the same cost as computing $DP_{\Omega}(\theta)$ by **backpropagation**

Gradient = Expected path

Proposition (Mensch & Blondel, 2018) (See also Eisner, 2016)

$$\nabla \mathrm{DP}_{\mathbf{\Omega}}(\theta) = \mathbb{E}_p[Y] \in \mathrm{conv}(\mathcal{Y})$$

Can compute $\mathbb{E}_p[Y]$ at the same cost as computing $DP_{\Omega}(\theta)$ by **backpropagation**

For
$$\Omega$$
 = negative entropy, we have
 $\nabla DP_{\Omega}(\theta) = \mathbb{E}_p[Y] = \frac{\sum_{y \in \mathscr{Y}} \exp\langle y, \theta \rangle y}{Z(\theta)}$

Backpropagation

Backpropagation

1. $DP_{\Omega}(\theta)$ is convex

Proof uses that $x \le y \Rightarrow max_{\Omega}(x) \le max_{\Omega}(y)$

1. $DP_{\Omega}(\theta)$ is convex

Proof uses that $x \le y \Rightarrow max_{\Omega}(x) \le max_{\Omega}(y)$

2. Approximation error

N: #nodes in DAG L, U: constants that depend on Ω

 $(N-1) L \leq DP_{\Omega}(\theta) - DP(\theta) \leq (N-1) U$

1. $DP_{\Omega}(\theta)$ is convex

Proof uses that $x \le y \Rightarrow max_{\Omega}(x) \le max_{\Omega}(y)$

2. Approximation error

N: #nodes in DAG L, U: constants that depend on Ω

 $(N-1) L \leq DP_{\Omega}(\theta) - DP(\theta) \leq (N-1) U$

3. $DP_{\Omega}(\theta) = \max_{\Omega}((\langle y, \theta \rangle)_{y \in \mathscr{Y}}) \Leftrightarrow \Omega = -H$ (Shannon's negentropy)

Proof reduces to showing that \max_{-H} is the only \max_{Ω} supporting **associativity**, i.e., $\max_{-H}(x, \max_{-H}(y, z)) = \max_{-H}(\max_{-H}(x, y), z)$

Training time

Structured perceptron loss (Collins, 2002)

 $\max_{y \in \mathcal{Y}} \langle \theta, y \rangle - \langle \theta, y_{\text{true}} \rangle$

Training time

Structured perceptron loss (Collins, 2002)

 $\max_{y \in \mathcal{Y}} \langle \theta, y \rangle - \langle \theta, y_{\text{true}} \rangle = \text{DP}(\theta) - \langle \theta, y_{\text{true}} \rangle$

Training time

Structured perceptron loss (Collins, 2002)

 $\max_{y \in \mathcal{Y}} \langle \theta, y \rangle - \langle \theta, y_{\text{true}} \rangle = \text{DP}(\theta) - \langle \theta, y_{\text{true}} \rangle$

<u>Smoothed loss (proposed)</u> $DP_{\Omega}(\theta) - \langle \theta, y_{true} \rangle$

Training time

Structured perceptron loss (Collins, 2002)

 $\max_{y \in \mathcal{Y}} \langle \theta, y \rangle - \langle \theta, y_{\text{true}} \rangle = \text{DP}(\theta) - \langle \theta, y_{\text{true}} \rangle$

 $\frac{\text{Smoothed loss (proposed)}}{\text{DP}_{\Omega}(\theta) - \langle \theta, y_{\text{true}} \rangle} \quad \text{Entropic regularization} \rightarrow \text{CRF loss}$ $\text{Quadratic regularization} \rightarrow \text{new loss}$

Training time

Structured perceptron loss (Collins, 2002)

 $\max_{y \in \mathcal{Y}} \langle \theta, y \rangle - \langle \theta, y_{\text{true}} \rangle = \text{DP}(\theta) - \langle \theta, y_{\text{true}} \rangle$

<u>Smoothed loss (proposed)</u> $DP_{\Omega}(\theta) - \langle \theta, y_{true} \rangle$

Entropic regularization \rightarrow CRF loss Quadratic regularization \rightarrow new loss

Test time

MAP solution

$$\underset{y \in \mathscr{Y} \subseteq \mathbb{R}^m}{\operatorname{arg\,max}} \langle y, \theta \rangle$$

Training time

Structured perceptron loss (Collins, 2002)

 $\max_{y \in \mathcal{Y}} \langle \theta, y \rangle - \langle \theta, y_{\text{true}} \rangle = \text{DP}(\theta) - \langle \theta, y_{\text{true}} \rangle$

 $\frac{\text{Smoothed loss (proposed)}}{\text{DP}_{\Omega}(\theta) - \langle \theta, y_{\text{true}} \rangle} \quad \text{Entrop}$

Entropic regularization \rightarrow CRF loss Quadratic regularization \rightarrow new loss

Test time

MAP solution

Expected solution

 $\underset{y \in \mathcal{Y} \subseteq \mathbb{R}^{m}}{\operatorname{arg\,max}} \langle y, \theta \rangle \quad \nabla \mathrm{DP}_{\Omega}(\theta) = \mathbb{E}_{p}[Y]$

Training time

Structured perceptron loss (Collins, 2002)

 $\max_{y \in \mathcal{Y}} \langle \theta, y \rangle - \langle \theta, y_{\text{true}} \rangle = \text{DP}(\theta) - \langle \theta, y_{\text{true}} \rangle$

 $\frac{\text{Smoothed loss (proposed)}}{\text{DP}_{\Omega}(\theta) - \langle \theta, y_{\text{true}} \rangle} \quad \text{Entropic regularization} \quad \rightarrow \text{CRF loss}$ $Quadratic regularization \rightarrow \text{new loss}$

Test time

MAP solution

 $y \in \mathscr{Y} \subseteq \mathbb{R}^m$

arg max $\langle y, \theta \rangle$

Expected solution

 $\nabla \mathrm{DP}_{\Omega}(\theta) = \mathbb{E}_p[Y]$

<u>Ranking</u>

Sort by probability (sparse case)

S-ORG O B-PER E-PER O O O O S-LOC Apple CEO Tim Cook introduces new iphone in Cupertino.

Tags: {Location, Organization, Person, Misc} x {Singleton, Begin, Inside, End}

S-ORG O B-PER E-PER O O O O S-LOC Apple CEO Tim Cook introduces new iphone in Cupertino.

Tags: {Location, Organization, Person, Misc} x {Singleton, Begin, Inside, End}

Examples of predicted soft assignments at test time

F₁ score comparison on CoNLL03 NER datasets

	English	Spanish	German	Dutch
CRF loss (Entropy)	90.80	86.68	77.35	87.56
Squared norm	90.86	85.51	76.01	86.58
Lample et al 2016 (CRF loss)	90.96	85.75	78.76	81.74

F1 score comparison on CoNLL03 NER datasets

Competitive results with other losses

Fast convergence at train time thanks to smoothness

. Sparse probabilistic model available at test time!

Squared norm	90.86	85.51	76.01	86.58
Lample et al 2016 (CRF loss)	90.96	85.75	78.76	81.74

Summary of second part

Gradient = Expected path

$$\nabla \mathrm{DP}_{\mathbf{\Omega}}(\theta) = \mathbb{E}_p[Y]$$

a distribution over paths in the DAG

computed efficiently by backprop

Entropic regularization = CRF L2 regularization = new sparse model

•The log-sum-exp and softmax are ubiquitous in deep learning

- •The log-sum-exp and softmax are ubiquitous in deep learning
- ●max_Ω and argmax_Ω operators provide drop-in replacement for them with sparse and/or structured outputs

- •The log-sum-exp and softmax are ubiquitous in deep learning
- ●max_Ω and argmax_Ω operators provide drop-in replacement for them with sparse and/or structured outputs
- Induce a probabilistic perspective

- •The log-sum-exp and softmax are ubiquitous in deep learning
- ●max_Ω and argmax_Ω operators provide drop-in replacement for them with sparse and/or structured outputs
- Induce a probabilistic perspective
- Many more potential applications to explore