
Structured Attention
&

Differentiable Dynamic Programming

Mathieu Blondel
Staff Research Scientist

NTT, Kyoto, Japan

January 4th, 2019

Outline

1. Structured attention

2. Differentiable dynamic programming

Outline

1. Structured attention

2. Differentiable dynamic programming

differentiable  

max and argmax 

operators!

Outline

1. Structured attention

2. Differentiable dynamic programming

Sequence to sequence with attention

Bahdanau et al., ICLR, 2015

Sequence to sequence with attention

Bahdanau et al., ICLR, 2015

w1 w2 w3

h1 h2 h3

La coalition internationale

encoder

input W = lookup(words)

H = encode(W)

Sequence to sequence with attention

Bahdanau et al., ICLR, 2015

w1 w2 w3

h1 h2 h3

La coalition internationale

encoder

input W = lookup(words)

H = encode(W)

a1

aggregated 
vector

θt = Hqt−1

pt = softmax(θt)

at = p⊤
t H

attn scores

attn proba

aggregated vector

Sequence to sequence with attention

Bahdanau et al., ICLR, 2015

w1 w2 w3

h1 h2 h3

La coalition internationale

encoder

input W = lookup(words)

H = encode(W)

a1

aggregated 
vector

θt = Hqt−1

pt = softmax(θt)

at = p⊤
t H

attn scores

attn proba

aggregated vector

q1
decoder

qt = decode(at, yt−1, qt−1)

Sequence to sequence with attention

Bahdanau et al., ICLR, 2015

w1 w2 w3

h1 h2 h3

La coalition internationale

encoder

input W = lookup(words)

H = encode(W)

a1

aggregated 
vector

θt = Hqt−1

pt = softmax(θt)

at = p⊤
t H

attn scores

attn proba

aggregated vector

q1
decoder

qt = decode(at, yt−1, qt−1)
y1

The

output
yt = Mqt + b

Sequence to sequence with attention

w1 w2 w3

h1 h2 h3

a1 a2

q1 q2

La coalition internationale

y1 y2

The international

encoder

decoder

output

input

aggregated 
vector

Bahdanau et al., ICLR, 2015

W = lookup(words)

H = encode(W)

θt = Hqt−1

pt = softmax(θt)

at = p⊤
t H

attn scores

attn proba

aggregated vector

qt = decode(at, yt−1, qt−1)

yt = Mqt + b

Sequence to sequence with attention

w1 w2 w3

h1 h2 h3

a1 a2 a3

q1 q2 q3

La coalition internationale

y1 y2 y3

The international coalition

encoder

decoder

output

input

aggregated 
vector

Bahdanau et al., ICLR, 2015

W = lookup(words)

H = encode(W)

θt = Hqt−1

pt = softmax(θt)

at = p⊤
t H

attn scores

attn proba

aggregated vector

qt = decode(at, yt−1, qt−1)

yt = Mqt + b

Softmax attention

Bahdanau et al., ICLR, 2015

softmax(θ) ≜
exp(θ)

∑m
i=1 exp(θi)

Figure 3: Attention weights when considering the contradicted hypothesis “No one is dancing.”

fusedmax results in the most interpretable feature groupings: Figure 3 shows the weights of the
neural network’s attention to the text, when considering the hypothesis “No one is dancing.” In this
case, all four models correctly predicted that the text “A band is playing on stage at a concert and the
attendants are dancing to the music,” denoted along the x-axis, contradicts the hypothesis, although
the attention weights differ. Notably, fusedmax identifies the meaningful segment “band is playing”.

4.2 Machine translation experiments

Sequence-to-sequence neural machine translation (NMT) has recently become a strong contender in
machine translation [2, 29]. In NMT, attention weights can be seen as an alignment between source
and translated words. To demonstrate the potential of our new attention mechanisms for NMT, we ran
experiments on 10 language pairs. We build on OpenNMT-py [24], based on PyTorch [37], with all
default hyperparameters (detailed in Appendix C.3), simply replacing softmax with the proposed ΠΩ.

OpenNMT-py with softmax attention is optimized for the GPU. Since sparsemax, fusedmax, and
oscarmax rely on sorting operations, we implement their computations on the CPU for simplicity,
keeping the rest of the pipeline on the GPU. However, we observe that, even with this context
switching, the number of tokens processed per second was within 3/4 of the softmax pipeline. For
sq-pnorm-max, we observe that the projected gradient solver used in the forward pass, unlike the
linear system solver used in the backward pass, could become a computational bottleneck. To mitigate
this effect, we set the tolerance of the solver’s stopping criterion to 10−2.

Quantitatively, we find that all compared attention mechanisms are always within 1 BLEU score
point of the best mechanism (for detailed results, cf. Appendix C.3). This suggests that structured
sparsity does not restrict accuracy. However, as illustrated in Figure 4, fusedmax and oscarmax often
lead to more interpretable attention alignments, as well as to qualitatively different translations.

Figure 4: Attention weights for French to English translation, using the conventions of Figure 1.
Within a row, weights grouped by oscarmax under the same cluster are denoted by “•”. Here, oscarmax
finds a slightly more natural English translation. More visulizations are given in Appendix C.3.

4.3 Sentence summarization experiments

Attention mechanisms were recently explored for sentence summarization in [39]. To generate
sentence-summary pairs at low cost, the authors proposed to use the title of a news article as a
noisy summary of the article’s leading sentence. They collected 4 million such pairs from the
Gigaword dataset and showed that this seemingly simplistic approach leads to models that generalize

7

Softmax attentionSoftmax attention

softmax(θ) ≜
exp(θ)

∑m
i=1 exp(θi)

Bahdanau et al., ICLR, 2015

Figure 3: Attention weights when considering the contradicted hypothesis “No one is dancing.”

fusedmax results in the most interpretable feature groupings: Figure 3 shows the weights of the
neural network’s attention to the text, when considering the hypothesis “No one is dancing.” In this
case, all four models correctly predicted that the text “A band is playing on stage at a concert and the
attendants are dancing to the music,” denoted along the x-axis, contradicts the hypothesis, although
the attention weights differ. Notably, fusedmax identifies the meaningful segment “band is playing”.

4.2 Machine translation experiments

Sequence-to-sequence neural machine translation (NMT) has recently become a strong contender in
machine translation [2, 29]. In NMT, attention weights can be seen as an alignment between source
and translated words. To demonstrate the potential of our new attention mechanisms for NMT, we ran
experiments on 10 language pairs. We build on OpenNMT-py [24], based on PyTorch [37], with all
default hyperparameters (detailed in Appendix C.3), simply replacing softmax with the proposed ΠΩ.

OpenNMT-py with softmax attention is optimized for the GPU. Since sparsemax, fusedmax, and
oscarmax rely on sorting operations, we implement their computations on the CPU for simplicity,
keeping the rest of the pipeline on the GPU. However, we observe that, even with this context
switching, the number of tokens processed per second was within 3/4 of the softmax pipeline. For
sq-pnorm-max, we observe that the projected gradient solver used in the forward pass, unlike the
linear system solver used in the backward pass, could become a computational bottleneck. To mitigate
this effect, we set the tolerance of the solver’s stopping criterion to 10−2.

Quantitatively, we find that all compared attention mechanisms are always within 1 BLEU score
point of the best mechanism (for detailed results, cf. Appendix C.3). This suggests that structured
sparsity does not restrict accuracy. However, as illustrated in Figure 4, fusedmax and oscarmax often
lead to more interpretable attention alignments, as well as to qualitatively different translations.

Figure 4: Attention weights for French to English translation, using the conventions of Figure 1.
Within a row, weights grouped by oscarmax under the same cluster are denoted by “•”. Here, oscarmax
finds a slightly more natural English translation. More visulizations are given in Appendix C.3.

4.3 Sentence summarization experiments

Attention mechanisms were recently explored for sentence summarization in [39]. To generate
sentence-summary pairs at low cost, the authors proposed to use the title of a news article as a
noisy summary of the article’s leading sentence. They collected 4 million such pairs from the
Gigaword dataset and showed that this seemingly simplistic approach leads to models that generalize

7

Softmax attentionSoftmax attention

softmax(θ) ≜
exp(θ)

∑m
i=1 exp(θi)

Bahdanau et al., ICLR, 2015

Figure 3: Attention weights when considering the contradicted hypothesis “No one is dancing.”

fusedmax results in the most interpretable feature groupings: Figure 3 shows the weights of the
neural network’s attention to the text, when considering the hypothesis “No one is dancing.” In this
case, all four models correctly predicted that the text “A band is playing on stage at a concert and the
attendants are dancing to the music,” denoted along the x-axis, contradicts the hypothesis, although
the attention weights differ. Notably, fusedmax identifies the meaningful segment “band is playing”.

4.2 Machine translation experiments

Sequence-to-sequence neural machine translation (NMT) has recently become a strong contender in
machine translation [2, 29]. In NMT, attention weights can be seen as an alignment between source
and translated words. To demonstrate the potential of our new attention mechanisms for NMT, we ran
experiments on 10 language pairs. We build on OpenNMT-py [24], based on PyTorch [37], with all
default hyperparameters (detailed in Appendix C.3), simply replacing softmax with the proposed ΠΩ.

OpenNMT-py with softmax attention is optimized for the GPU. Since sparsemax, fusedmax, and
oscarmax rely on sorting operations, we implement their computations on the CPU for simplicity,
keeping the rest of the pipeline on the GPU. However, we observe that, even with this context
switching, the number of tokens processed per second was within 3/4 of the softmax pipeline. For
sq-pnorm-max, we observe that the projected gradient solver used in the forward pass, unlike the
linear system solver used in the backward pass, could become a computational bottleneck. To mitigate
this effect, we set the tolerance of the solver’s stopping criterion to 10−2.

Quantitatively, we find that all compared attention mechanisms are always within 1 BLEU score
point of the best mechanism (for detailed results, cf. Appendix C.3). This suggests that structured
sparsity does not restrict accuracy. However, as illustrated in Figure 4, fusedmax and oscarmax often
lead to more interpretable attention alignments, as well as to qualitatively different translations.

Figure 4: Attention weights for French to English translation, using the conventions of Figure 1.
Within a row, weights grouped by oscarmax under the same cluster are denoted by “•”. Here, oscarmax
finds a slightly more natural English translation. More visulizations are given in Appendix C.3.

4.3 Sentence summarization experiments

Attention mechanisms were recently explored for sentence summarization in [39]. To generate
sentence-summary pairs at low cost, the authors proposed to use the title of a news article as a
noisy summary of the article’s leading sentence. They collected 4 million such pairs from the
Gigaword dataset and showed that this seemingly simplistic approach leads to models that generalize

7

Softmax attentionSoftmax attention

softmax(θ) ≜
exp(θ)

∑m
i=1 exp(θi)

Bahdanau et al., ICLR, 2015

Figure 3: Attention weights when considering the contradicted hypothesis “No one is dancing.”

fusedmax results in the most interpretable feature groupings: Figure 3 shows the weights of the
neural network’s attention to the text, when considering the hypothesis “No one is dancing.” In this
case, all four models correctly predicted that the text “A band is playing on stage at a concert and the
attendants are dancing to the music,” denoted along the x-axis, contradicts the hypothesis, although
the attention weights differ. Notably, fusedmax identifies the meaningful segment “band is playing”.

4.2 Machine translation experiments

Sequence-to-sequence neural machine translation (NMT) has recently become a strong contender in
machine translation [2, 29]. In NMT, attention weights can be seen as an alignment between source
and translated words. To demonstrate the potential of our new attention mechanisms for NMT, we ran
experiments on 10 language pairs. We build on OpenNMT-py [24], based on PyTorch [37], with all
default hyperparameters (detailed in Appendix C.3), simply replacing softmax with the proposed ΠΩ.

OpenNMT-py with softmax attention is optimized for the GPU. Since sparsemax, fusedmax, and
oscarmax rely on sorting operations, we implement their computations on the CPU for simplicity,
keeping the rest of the pipeline on the GPU. However, we observe that, even with this context
switching, the number of tokens processed per second was within 3/4 of the softmax pipeline. For
sq-pnorm-max, we observe that the projected gradient solver used in the forward pass, unlike the
linear system solver used in the backward pass, could become a computational bottleneck. To mitigate
this effect, we set the tolerance of the solver’s stopping criterion to 10−2.

Quantitatively, we find that all compared attention mechanisms are always within 1 BLEU score
point of the best mechanism (for detailed results, cf. Appendix C.3). This suggests that structured
sparsity does not restrict accuracy. However, as illustrated in Figure 4, fusedmax and oscarmax often
lead to more interpretable attention alignments, as well as to qualitatively different translations.

Figure 4: Attention weights for French to English translation, using the conventions of Figure 1.
Within a row, weights grouped by oscarmax under the same cluster are denoted by “•”. Here, oscarmax
finds a slightly more natural English translation. More visulizations are given in Appendix C.3.

4.3 Sentence summarization experiments

Attention mechanisms were recently explored for sentence summarization in [39]. To generate
sentence-summary pairs at low cost, the authors proposed to use the title of a news article as a
noisy summary of the article’s leading sentence. They collected 4 million such pairs from the
Gigaword dataset and showed that this seemingly simplistic approach leads to models that generalize

7

Bahdanau et al., ICLR, 2015

Softmax attentionSoftmax attention

softmax(θ) ≜
exp(θ)

∑m
i=1 exp(θi)

Figure 3: Attention weights when considering the contradicted hypothesis “No one is dancing.”

fusedmax results in the most interpretable feature groupings: Figure 3 shows the weights of the
neural network’s attention to the text, when considering the hypothesis “No one is dancing.” In this
case, all four models correctly predicted that the text “A band is playing on stage at a concert and the
attendants are dancing to the music,” denoted along the x-axis, contradicts the hypothesis, although
the attention weights differ. Notably, fusedmax identifies the meaningful segment “band is playing”.

4.2 Machine translation experiments

Sequence-to-sequence neural machine translation (NMT) has recently become a strong contender in
machine translation [2, 29]. In NMT, attention weights can be seen as an alignment between source
and translated words. To demonstrate the potential of our new attention mechanisms for NMT, we ran
experiments on 10 language pairs. We build on OpenNMT-py [24], based on PyTorch [37], with all
default hyperparameters (detailed in Appendix C.3), simply replacing softmax with the proposed ΠΩ.

OpenNMT-py with softmax attention is optimized for the GPU. Since sparsemax, fusedmax, and
oscarmax rely on sorting operations, we implement their computations on the CPU for simplicity,
keeping the rest of the pipeline on the GPU. However, we observe that, even with this context
switching, the number of tokens processed per second was within 3/4 of the softmax pipeline. For
sq-pnorm-max, we observe that the projected gradient solver used in the forward pass, unlike the
linear system solver used in the backward pass, could become a computational bottleneck. To mitigate
this effect, we set the tolerance of the solver’s stopping criterion to 10−2.

Quantitatively, we find that all compared attention mechanisms are always within 1 BLEU score
point of the best mechanism (for detailed results, cf. Appendix C.3). This suggests that structured
sparsity does not restrict accuracy. However, as illustrated in Figure 4, fusedmax and oscarmax often
lead to more interpretable attention alignments, as well as to qualitatively different translations.

Figure 4: Attention weights for French to English translation, using the conventions of Figure 1.
Within a row, weights grouped by oscarmax under the same cluster are denoted by “•”. Here, oscarmax
finds a slightly more natural English translation. More visulizations are given in Appendix C.3.

4.3 Sentence summarization experiments

Attention mechanisms were recently explored for sentence summarization in [39]. To generate
sentence-summary pairs at low cost, the authors proposed to use the title of a news article as a
noisy summary of the article’s leading sentence. They collected 4 million such pairs from the
Gigaword dataset and showed that this seemingly simplistic approach leads to models that generalize

7

Bahdanau et al., ICLR, 2015

Softmax attentionSoftmax attention

softmax(θ) ≜
exp(θ)

∑m
i=1 exp(θi)

Works pretty well 
Somewhat interpretable

Figure 3: Attention weights when considering the contradicted hypothesis “No one is dancing.”

fusedmax results in the most interpretable feature groupings: Figure 3 shows the weights of the
neural network’s attention to the text, when considering the hypothesis “No one is dancing.” In this
case, all four models correctly predicted that the text “A band is playing on stage at a concert and the
attendants are dancing to the music,” denoted along the x-axis, contradicts the hypothesis, although
the attention weights differ. Notably, fusedmax identifies the meaningful segment “band is playing”.

4.2 Machine translation experiments

Sequence-to-sequence neural machine translation (NMT) has recently become a strong contender in
machine translation [2, 29]. In NMT, attention weights can be seen as an alignment between source
and translated words. To demonstrate the potential of our new attention mechanisms for NMT, we ran
experiments on 10 language pairs. We build on OpenNMT-py [24], based on PyTorch [37], with all
default hyperparameters (detailed in Appendix C.3), simply replacing softmax with the proposed ΠΩ.

OpenNMT-py with softmax attention is optimized for the GPU. Since sparsemax, fusedmax, and
oscarmax rely on sorting operations, we implement their computations on the CPU for simplicity,
keeping the rest of the pipeline on the GPU. However, we observe that, even with this context
switching, the number of tokens processed per second was within 3/4 of the softmax pipeline. For
sq-pnorm-max, we observe that the projected gradient solver used in the forward pass, unlike the
linear system solver used in the backward pass, could become a computational bottleneck. To mitigate
this effect, we set the tolerance of the solver’s stopping criterion to 10−2.

Quantitatively, we find that all compared attention mechanisms are always within 1 BLEU score
point of the best mechanism (for detailed results, cf. Appendix C.3). This suggests that structured
sparsity does not restrict accuracy. However, as illustrated in Figure 4, fusedmax and oscarmax often
lead to more interpretable attention alignments, as well as to qualitatively different translations.

Figure 4: Attention weights for French to English translation, using the conventions of Figure 1.
Within a row, weights grouped by oscarmax under the same cluster are denoted by “•”. Here, oscarmax
finds a slightly more natural English translation. More visulizations are given in Appendix C.3.

4.3 Sentence summarization experiments

Attention mechanisms were recently explored for sentence summarization in [39]. To generate
sentence-summary pairs at low cost, the authors proposed to use the title of a news article as a
noisy summary of the article’s leading sentence. They collected 4 million such pairs from the
Gigaword dataset and showed that this seemingly simplistic approach leads to models that generalize

7

Bahdanau et al., ICLR, 2015

Softmax attentionSoftmax attention

softmax(θ) ≜
exp(θ)

∑m
i=1 exp(θi)

Pays attention to all words 
(dense)

Works pretty well 
Somewhat interpretable

fusedmax oscarmax sq-pnorm-max softmax sparsemax

Figure 7 (continued): Further translation examples from French to English.

19

Martins & Astudillo, ICML, 2016

sparsemax(θ) ≜ arg min
p∈△m

∥p − θ∥2

Softmax attentionSparsemax attention

fusedmax oscarmax sq-pnorm-max softmax sparsemax

Figure 7 (continued): Further translation examples from French to English.

19

Martins & Astudillo, ICML, 2016

sparsemax(θ) ≜ arg min
p∈△m

∥p − θ∥2

Softmax attentionSparsemax attention

Sparse
More interpretable

fusedmax oscarmax sq-pnorm-max softmax sparsemax

Figure 7 (continued): Further translation examples from French to English.

19

Martins & Astudillo, ICML, 2016

sparsemax(θ) ≜ arg min
p∈△m

∥p − θ∥2

Softmax attentionSparsemax attention

Can we generalize it? 
Can we incorporate structure?

Sparse
More interpretable

Figure 3: Attention weights when considering the contradicted hypothesis “No one is dancing.”

fusedmax results in the most interpretable feature groupings: Figure 3 shows the weights of the
neural network’s attention to the text, when considering the hypothesis “No one is dancing.” In this
case, all four models correctly predicted that the text “A band is playing on stage at a concert and the
attendants are dancing to the music,” denoted along the x-axis, contradicts the hypothesis, although
the attention weights differ. Notably, fusedmax identifies the meaningful segment “band is playing”.

4.2 Machine translation experiments

Sequence-to-sequence neural machine translation (NMT) has recently become a strong contender in
machine translation [2, 29]. In NMT, attention weights can be seen as an alignment between source
and translated words. To demonstrate the potential of our new attention mechanisms for NMT, we ran
experiments on 10 language pairs. We build on OpenNMT-py [24], based on PyTorch [37], with all
default hyperparameters (detailed in Appendix C.3), simply replacing softmax with the proposed ΠΩ.

OpenNMT-py with softmax attention is optimized for the GPU. Since sparsemax, fusedmax, and
oscarmax rely on sorting operations, we implement their computations on the CPU for simplicity,
keeping the rest of the pipeline on the GPU. However, we observe that, even with this context
switching, the number of tokens processed per second was within 3/4 of the softmax pipeline. For
sq-pnorm-max, we observe that the projected gradient solver used in the forward pass, unlike the
linear system solver used in the backward pass, could become a computational bottleneck. To mitigate
this effect, we set the tolerance of the solver’s stopping criterion to 10−2.

Quantitatively, we find that all compared attention mechanisms are always within 1 BLEU score
point of the best mechanism (for detailed results, cf. Appendix C.3). This suggests that structured
sparsity does not restrict accuracy. However, as illustrated in Figure 4, fusedmax and oscarmax often
lead to more interpretable attention alignments, as well as to qualitatively different translations.

Figure 4: Attention weights for French to English translation, using the conventions of Figure 1.
Within a row, weights grouped by oscarmax under the same cluster are denoted by “•”. Here, oscarmax
finds a slightly more natural English translation. More visulizations are given in Appendix C.3.

4.3 Sentence summarization experiments

Attention mechanisms were recently explored for sentence summarization in [39]. To generate
sentence-summary pairs at low cost, the authors proposed to use the title of a news article as a
noisy summary of the article’s leading sentence. They collected 4 million such pairs from the
Gigaword dataset and showed that this seemingly simplistic approach leads to models that generalize

7

Niculae & Blondel, NIPS 2017

fusedmax(θ) ≜ ???

Fusedmax attentionFusedmax attention (proposed)

Figure 3: Attention weights when considering the contradicted hypothesis “No one is dancing.”

fusedmax results in the most interpretable feature groupings: Figure 3 shows the weights of the
neural network’s attention to the text, when considering the hypothesis “No one is dancing.” In this
case, all four models correctly predicted that the text “A band is playing on stage at a concert and the
attendants are dancing to the music,” denoted along the x-axis, contradicts the hypothesis, although
the attention weights differ. Notably, fusedmax identifies the meaningful segment “band is playing”.

4.2 Machine translation experiments

Sequence-to-sequence neural machine translation (NMT) has recently become a strong contender in
machine translation [2, 29]. In NMT, attention weights can be seen as an alignment between source
and translated words. To demonstrate the potential of our new attention mechanisms for NMT, we ran
experiments on 10 language pairs. We build on OpenNMT-py [24], based on PyTorch [37], with all
default hyperparameters (detailed in Appendix C.3), simply replacing softmax with the proposed ΠΩ.

OpenNMT-py with softmax attention is optimized for the GPU. Since sparsemax, fusedmax, and
oscarmax rely on sorting operations, we implement their computations on the CPU for simplicity,
keeping the rest of the pipeline on the GPU. However, we observe that, even with this context
switching, the number of tokens processed per second was within 3/4 of the softmax pipeline. For
sq-pnorm-max, we observe that the projected gradient solver used in the forward pass, unlike the
linear system solver used in the backward pass, could become a computational bottleneck. To mitigate
this effect, we set the tolerance of the solver’s stopping criterion to 10−2.

Quantitatively, we find that all compared attention mechanisms are always within 1 BLEU score
point of the best mechanism (for detailed results, cf. Appendix C.3). This suggests that structured
sparsity does not restrict accuracy. However, as illustrated in Figure 4, fusedmax and oscarmax often
lead to more interpretable attention alignments, as well as to qualitatively different translations.

Figure 4: Attention weights for French to English translation, using the conventions of Figure 1.
Within a row, weights grouped by oscarmax under the same cluster are denoted by “•”. Here, oscarmax
finds a slightly more natural English translation. More visulizations are given in Appendix C.3.

4.3 Sentence summarization experiments

Attention mechanisms were recently explored for sentence summarization in [39]. To generate
sentence-summary pairs at low cost, the authors proposed to use the title of a news article as a
noisy summary of the article’s leading sentence. They collected 4 million such pairs from the
Gigaword dataset and showed that this seemingly simplistic approach leads to models that generalize

7

Niculae & Blondel, NIPS 2017

fusedmax(θ) ≜ ???

Fusedmax attentionFusedmax attention (proposed)

Sparse
Adjacent grouping

Good prior / Inductive bias
(encourage peeking at entire blocks of words)

Niculae & Blondel, NIPS 2017

Fusedmax attentionOur contributions

Niculae & Blondel, NIPS 2017

Fusedmax attentionOur contributions

•A principled framework for differentiable argmax operators

Niculae & Blondel, NIPS 2017

Fusedmax attentionOur contributions

•A principled framework for differentiable argmax operators

• Recovers softmax and sparsemax as special cases

Niculae & Blondel, NIPS 2017

Fusedmax attentionOur contributions

•A principled framework for differentiable argmax operators

• Recovers softmax and sparsemax as special cases

• Enables to construct new operators easily

Niculae & Blondel, NIPS 2017

Fusedmax attentionOur contributions

•A principled framework for differentiable argmax operators

• Recovers softmax and sparsemax as special cases

• Enables to construct new operators easily

•Efficient forward and backward computations for fusedmax

Niculae & Blondel, NIPS 2017

Fusedmax attentionOur contributions

•A principled framework for differentiable argmax operators

• Recovers softmax and sparsemax as special cases

• Enables to construct new operators easily

•Efficient forward and backward computations for fusedmax

•Extensive experiments on NMT and sentence summarization

From argmax to softmax

i⋆ ∈ arg max
i∈[m]

θi

From argmax to softmax

i⋆ ∈ arg max
i∈[m]

θiargmax(θ) ≜ ei⋆

One-hot representation  
of integer argmax

From argmax to softmax

Function from
Rm to {e1, …, em}

i⋆ ∈ arg max
i∈[m]

θiargmax(θ) ≜ ei⋆

One-hot representation  
of integer argmax

From argmax to softmax

Function from
Rm to {e1, …, em}

i⋆ ∈ arg max
i∈[m]

θiargmax(θ) ≜ ei⋆

One-hot representation  
of integer argmax

argmax([t,0])1

-4 -2 0 2 4
0

1.0

0.5

t

Discontinuous  
function

From argmax to softmax

Function from
Rm to {e1, …, em}

i⋆ ∈ arg max
i∈[m]

θiargmax(θ) ≜ ei⋆

One-hot representation  
of integer argmax

argmax([t,0])1

-4 -2 0 2 4
0

1.0

0.5

t

Discontinuous  
function

softmax([t,0])1
Should really be  

called soft argmax

usual sigmoid function  
when m = 2

From argmax to softmax

Function from
Rm to {e1, …, em}

i⋆ ∈ arg max
i∈[m]

θiargmax(θ) ≜ ei⋆

One-hot representation  
of integer argmax

argmax([t,0])1

-4 -2 0 2 4
0

1.0

0.5

t

Discontinuous  
function

softmax([t,0])1
Should really be  

called soft argmax

usual sigmoid function  
when m = 2

From argmax to softmax

Where does the softmax come from? 
 

Can we generalize it?

Differentiable argmax: a variational perspective

argmax(θ) = arg max
p∈{e1,…,em}

⟨p, θ⟩

Differentiable argmax: a variational perspective

argmax(θ) = arg max
p∈{e1,…,em}

⟨p, θ⟩

= arg max
p∈△m

⟨p, θ⟩

Differentiable argmax: a variational perspective

argmax(θ) = arg max
p∈{e1,…,em}

⟨p, θ⟩

= arg max
p∈△m

⟨p, θ⟩

p⋆

e2 e3
unregularized (Ω=0)

Fundamental theorem 
of linear programming  

(Dantzig, 1955)

θ

Differentiable argmax: a variational perspective

argmax(θ) = arg max
p∈{e1,…,em}

⟨p, θ⟩ argmaxΩ(θ) ≜ arg max
p∈△m

⟨p, θ⟩−Ω(p)

Introduce regularization

Strongly-convex regularizer= arg max
p∈△m

⟨p, θ⟩

p⋆

e2 e3
unregularized (Ω=0)

Fundamental theorem 
of linear programming  

(Dantzig, 1955)

θ

Differentiable argmax: a variational perspective

e1

e2 e3

p⋆

regularized

Move solution 
away from the simplex vertices

(spread probability mass)

argmax(θ) = arg max
p∈{e1,…,em}

⟨p, θ⟩ argmaxΩ(θ) ≜ arg max
p∈△m

⟨p, θ⟩−Ω(p)

Introduce regularization

Strongly-convex regularizer= arg max
p∈△m

⟨p, θ⟩

p⋆

e2 e3
unregularized (Ω=0)

Fundamental theorem 
of linear programming  

(Dantzig, 1955)

θ

Differentiable argmax: a variational perspective

Examples

argmax

e3e2
t

argmax([t,0])1

Ω(p) = 0

Unregularized

-4 -2 0 2 4
0

1.0

0.5

argmaxΩ([t,0])1

Examples

argmax

e3e2
t

argmax([t,0])1

Ω(p) = 0

Unregularized

-4 -2 0 2 4
0

1.0

0.5

argmaxΩ([t,0])1

softmax([t,0])1

Ω(p) = ∑
i

pi log pi

Shannon (negative) entropy

softmax

Examples

argmax

e3e2
t

argmax([t,0])1

Ω(p) = 0

Unregularized

-4 -2 0 2 4
0

1.0

0.5

argmaxΩ([t,0])1

softmax([t,0])1

Ω(p) = ∑
i

pi log pi

Shannon (negative) entropy

softmax

sparsemax([t,0])1

Squared norm

Ω(p) =
1
2

∥p∥2

sparsemax

Exactly 0

Exactly 1

Examples

Figure 3: Attention weights when considering the contradicted hypothesis “No one is dancing.”

fusedmax results in the most interpretable feature groupings: Figure 3 shows the weights of the
neural network’s attention to the text, when considering the hypothesis “No one is dancing.” In this
case, all four models correctly predicted that the text “A band is playing on stage at a concert and the
attendants are dancing to the music,” denoted along the x-axis, contradicts the hypothesis, although
the attention weights differ. Notably, fusedmax identifies the meaningful segment “band is playing”.

4.2 Machine translation experiments

Sequence-to-sequence neural machine translation (NMT) has recently become a strong contender in
machine translation [2, 29]. In NMT, attention weights can be seen as an alignment between source
and translated words. To demonstrate the potential of our new attention mechanisms for NMT, we ran
experiments on 10 language pairs. We build on OpenNMT-py [24], based on PyTorch [37], with all
default hyperparameters (detailed in Appendix C.3), simply replacing softmax with the proposed ΠΩ.

OpenNMT-py with softmax attention is optimized for the GPU. Since sparsemax, fusedmax, and
oscarmax rely on sorting operations, we implement their computations on the CPU for simplicity,
keeping the rest of the pipeline on the GPU. However, we observe that, even with this context
switching, the number of tokens processed per second was within 3/4 of the softmax pipeline. For
sq-pnorm-max, we observe that the projected gradient solver used in the forward pass, unlike the
linear system solver used in the backward pass, could become a computational bottleneck. To mitigate
this effect, we set the tolerance of the solver’s stopping criterion to 10−2.

Quantitatively, we find that all compared attention mechanisms are always within 1 BLEU score
point of the best mechanism (for detailed results, cf. Appendix C.3). This suggests that structured
sparsity does not restrict accuracy. However, as illustrated in Figure 4, fusedmax and oscarmax often
lead to more interpretable attention alignments, as well as to qualitatively different translations.

Figure 4: Attention weights for French to English translation, using the conventions of Figure 1.
Within a row, weights grouped by oscarmax under the same cluster are denoted by “•”. Here, oscarmax
finds a slightly more natural English translation. More visulizations are given in Appendix C.3.

4.3 Sentence summarization experiments

Attention mechanisms were recently explored for sentence summarization in [39]. To generate
sentence-summary pairs at low cost, the authors proposed to use the title of a news article as a
noisy summary of the article’s leading sentence. They collected 4 million such pairs from the
Gigaword dataset and showed that this seemingly simplistic approach leads to models that generalize

7

Niculae & Blondel, NIPS 2017

fusedmax(θ) = argmaxΩ(θ)

Fusedmax attention

proxTV(x) ≜ arg min
y∈ℝm

∥x − y∥2 + λ
m−1

∑
i=1

|yi+1 − yi |

x y⋆

Total variation signal denoising

Fused Lasso (a.k.a. 1d total variation)

Ω(p) ≜
1
2

∥p∥2 + λ
m−1

∑
i=1

|pi+1 − pi |We choose

Fusedmax attention
sparsemax fused lasso

Ω(p) ≜
1
2

∥p∥2 + λ
m−1

∑
i=1

|pi+1 − pi |We choose

fusedmax(θ) ≜ arg min
p∈△m

1
2

∥p − θ∥2 + λ
m−1

∑
i=1

|pi+1 − pi |

leading to

Fusedmax attention
sparsemax fused lasso

Fusedmax: computation

How to compute  
forward and backward  

passes?
fusedmax upstream  

pipeline…
downstream  
pipeline…

backward pass

Fusedmax: computation

fusedmax = sparsemax ∘ proxTV

Proposition (Niculae & Blondel, 2017)

How to compute  
forward and backward  

passes?
fusedmax upstream  

pipeline…
downstream  
pipeline…

backward pass

Fusedmax: computation

fusedmax = sparsemax ∘ proxTV

Proposition (Niculae & Blondel, 2017)

How to compute  
forward and backward  

passes?
fusedmax upstream  

pipeline…
downstream  
pipeline…

backward pass

Not true for  
all regularizers!

Fusedmax: computation

fusedmax = sparsemax ∘ proxTV

Proposition (Niculae & Blondel, 2017)

sparsemax proxTV

forward Michelot, 1986 Condat, 2013

backward 
(Jacobian)

Martins &
Atstudillo, 2016 ?

How to compute  
forward and backward  

passes?
fusedmax upstream  

pipeline…
downstream  
pipeline…

backward pass

Not true for  
all regularizers!

Fusedmax: computation

Jacobian of proxTV

Figure 3: Attention weights when considering the contradicted hypothesis “No one is dancing.”

fusedmax results in the most interpretable feature groupings: Figure 3 shows the weights of the
neural network’s attention to the text, when considering the hypothesis “No one is dancing.” In this
case, all four models correctly predicted that the text “A band is playing on stage at a concert and the
attendants are dancing to the music,” denoted along the x-axis, contradicts the hypothesis, although
the attention weights differ. Notably, fusedmax identifies the meaningful segment “band is playing”.

4.2 Machine translation experiments

Sequence-to-sequence neural machine translation (NMT) has recently become a strong contender in
machine translation [2, 29]. In NMT, attention weights can be seen as an alignment between source
and translated words. To demonstrate the potential of our new attention mechanisms for NMT, we ran
experiments on 10 language pairs. We build on OpenNMT-py [24], based on PyTorch [37], with all
default hyperparameters (detailed in Appendix C.3), simply replacing softmax with the proposed ΠΩ.

OpenNMT-py with softmax attention is optimized for the GPU. Since sparsemax, fusedmax, and
oscarmax rely on sorting operations, we implement their computations on the CPU for simplicity,
keeping the rest of the pipeline on the GPU. However, we observe that, even with this context
switching, the number of tokens processed per second was within 3/4 of the softmax pipeline. For
sq-pnorm-max, we observe that the projected gradient solver used in the forward pass, unlike the
linear system solver used in the backward pass, could become a computational bottleneck. To mitigate
this effect, we set the tolerance of the solver’s stopping criterion to 10−2.

Quantitatively, we find that all compared attention mechanisms are always within 1 BLEU score
point of the best mechanism (for detailed results, cf. Appendix C.3). This suggests that structured
sparsity does not restrict accuracy. However, as illustrated in Figure 4, fusedmax and oscarmax often
lead to more interpretable attention alignments, as well as to qualitatively different translations.

Figure 4: Attention weights for French to English translation, using the conventions of Figure 1.
Within a row, weights grouped by oscarmax under the same cluster are denoted by “•”. Here, oscarmax
finds a slightly more natural English translation. More visulizations are given in Appendix C.3.

4.3 Sentence summarization experiments

Attention mechanisms were recently explored for sentence summarization in [39]. To generate
sentence-summary pairs at low cost, the authors proposed to use the title of a news article as a
noisy summary of the article’s leading sentence. They collected 4 million such pairs from the
Gigaword dataset and showed that this seemingly simplistic approach leads to models that generalize

7

output of
fusedmax(θ)

(forward pass)
|G1 | |G7 |…

Proposition (Niculae & Blondel, 2017)

Jacobian of proxTV

proxTV

Jacobian of
at θ

1
|G7 |

Simple block  
sparse structure

(fast backward pass)

1
|G1 |

Figure 3: Attention weights when considering the contradicted hypothesis “No one is dancing.”

fusedmax results in the most interpretable feature groupings: Figure 3 shows the weights of the
neural network’s attention to the text, when considering the hypothesis “No one is dancing.” In this
case, all four models correctly predicted that the text “A band is playing on stage at a concert and the
attendants are dancing to the music,” denoted along the x-axis, contradicts the hypothesis, although
the attention weights differ. Notably, fusedmax identifies the meaningful segment “band is playing”.

4.2 Machine translation experiments

Sequence-to-sequence neural machine translation (NMT) has recently become a strong contender in
machine translation [2, 29]. In NMT, attention weights can be seen as an alignment between source
and translated words. To demonstrate the potential of our new attention mechanisms for NMT, we ran
experiments on 10 language pairs. We build on OpenNMT-py [24], based on PyTorch [37], with all
default hyperparameters (detailed in Appendix C.3), simply replacing softmax with the proposed ΠΩ.

OpenNMT-py with softmax attention is optimized for the GPU. Since sparsemax, fusedmax, and
oscarmax rely on sorting operations, we implement their computations on the CPU for simplicity,
keeping the rest of the pipeline on the GPU. However, we observe that, even with this context
switching, the number of tokens processed per second was within 3/4 of the softmax pipeline. For
sq-pnorm-max, we observe that the projected gradient solver used in the forward pass, unlike the
linear system solver used in the backward pass, could become a computational bottleneck. To mitigate
this effect, we set the tolerance of the solver’s stopping criterion to 10−2.

Quantitatively, we find that all compared attention mechanisms are always within 1 BLEU score
point of the best mechanism (for detailed results, cf. Appendix C.3). This suggests that structured
sparsity does not restrict accuracy. However, as illustrated in Figure 4, fusedmax and oscarmax often
lead to more interpretable attention alignments, as well as to qualitatively different translations.

Figure 4: Attention weights for French to English translation, using the conventions of Figure 1.
Within a row, weights grouped by oscarmax under the same cluster are denoted by “•”. Here, oscarmax
finds a slightly more natural English translation. More visulizations are given in Appendix C.3.

4.3 Sentence summarization experiments

Attention mechanisms were recently explored for sentence summarization in [39]. To generate
sentence-summary pairs at low cost, the authors proposed to use the title of a news article as a
noisy summary of the article’s leading sentence. They collected 4 million such pairs from the
Gigaword dataset and showed that this seemingly simplistic approach leads to models that generalize

7

output of
fusedmax(θ)

(forward pass)
|G1 | |G7 |…

Proposition (Niculae & Blondel, 2017)

Jacobian of proxTV

oscarmax(θ) ≜ arg min
p∈△m

1
2

∥p − θ∥2 + λ∑
i<j

max{ |pi | , |pj |}
fusedmax oscarmax sq-pnorm-max softmax sparsemax

Figure 7: Attention alignment examples for French-to-English translation, following the conventions of Figure 1. “@-@" denotes a hyphen not separated by spaces.
When oscarmax induces multiple clusters, we denote them using different bullets (e.g., •,N,⌅). Fusedmax often selects meaningful grammatical segments, such as
“est consacré,” as well as determiner-noun constructions.

18

Oscarmax attention

Niculae & Blondel, NIPS 2017

16.8%

17.2%

17.6%

18.0%

18.4%

softmax sparsemax fusedmax oscarmax sq-pnorm-max

BLEU

Romanian-English

16.8%

17.2%

17.6%

18.0%

18.4%

softmax sparsemax fusedmax oscarmax sq-pnorm-max

BLEU

Experiments based on Open-NMT  
using WMT16 dataset

Neural Machine Translation

16.8%

17.2%

17.6%

18.0%

18.4%

softmax sparsemax fusedmax oscarmax sq-pnorm-max

BLEU

Romanian-English

16.8%

17.2%

17.6%

18.0%

18.4%

softmax sparsemax fusedmax oscarmax sq-pnorm-max

BLEU

Experiments based on Open-NMT  
using WMT16 dataset

Neural Machine Translation

. Experiments on 7 language pairs 

. Competitive results with enhanced interpretability!

Figure 1: Attention weights produced by the proposed fusedmax, compared to softmax and sparsemax,
on sentence summarization. The input sentence to be summarized (taken from [39]) is along the
x-axis. From top to bottom, each row shows where the attention is distributed when producing
each word in the summary. All rows sum to 1, the grey background corresponds to exactly 0 (never
achieved by softmax), and adjacent positions with exactly equal weight are not separated by borders.
Fusedmax pays attention to contiguous segments of text with equal weight; such segments never
occur with softmax and sparsemax. In addition to enhancing interpretability, we show in §4.3 that
fusedmax outperforms both softmax and sparsemax on this task in terms of ROUGE scores.

softmax. Compared to softmax, sparsemax outputs more interpretable attention weights, as illustrated
in [31] on the task of textual entailment. The principle of parsimony, which states that simple expla-
nations should be preferred over complex ones, is not, however, limited to sparsity: it remains open
whether new attention mechanisms can be designed to benefit from more structural prior knowledge.

Our contributions. The success of sparsemax motivates us to explore new attention mechanisms
that can both output sparse weights and take advantage of structural properties of the input through
the use of modern sparsity-inducing penalties. To do so, we make the following contributions:

1) We propose a new general framework that builds upon a max operator, regularized with a strongly
convex function. We show that this operator is differentiable, and that its gradient defines a mapping
from real values to probabilities, suitable as an attention mechanism. Our framework includes as
special cases both softmax and a slight generalization of sparsemax. (§2)

2) We show how to incorporate the fused lasso [42] in this framework, to derive a new attention
mechanism, named fusedmax, which encourages the network to pay attention to contiguous segments
of text when making a decision. This idea is illustrated in Figure 1 on sentence summarization. For
cases when the contiguity assumption is too strict, we show how to incorporate an OSCAR penalty
[7] to derive a new attention mechanism, named oscarmax, that encourages the network to pay equal
attention to possibly non-contiguous groups of words. (§3)

3) In order to use attention mechanisms defined under our framework in an autodiff toolkit, two
problems must be addressed: evaluating the attention itself and computing its Jacobian. However,
our attention mechanisms require solving a convex optimization problem and do not generally
enjoy a simple analytical expression, unlike softmax. Computing the Jacobian of the solution of
an optimization problem is called argmin/argmax differentiation and is currently an area of active
research (cf. [1] and references therein). One of our key algorithmic contributions is to show how
to compute this Jacobian under our general framework, as well as for fused lasso and OSCAR. (§3)

4) To showcase the potential of our new attention mechanisms as a drop-in replacement for existing
ones, we show empirically that our new attention mechanisms enhance interpretability while achieving
comparable or better accuracy on three diverse and challenging tasks: textual entailment, machine
translation, and sentence summarization. (§4)

Notation. We denote the set {1, . . . , d} by [d]. We denote the (d − 1)-dimensional probability
simplex by ∆d := {x ∈ Rd : ∥x∥1 = 1,x ≥ 0} and the Euclidean projection onto it by P∆d(x) :=
argminy∈∆d ∥y − x∥2. Given a function f : Rd → R ∪ {∞}, its convex conjugate is defined by

f∗(x) := supy∈dom f yTx−f(y). Given a norm ∥·∥, its dual is defined by ∥x∥∗ := sup∥y∥≤1 yTx.
We denote the subdifferential of a function f at y by ∂f(y). Elements of the subdifferential are
called subgradients and when f is differentiable, ∂f(y) contains a single element, the gradient of f
at y, denoted by ∇f(y). We denote the Jacobian of a function g : Rd → Rd at y by Jg(y) ∈ Rd×d

and the Hessian of a function f : Rd → R at y by Hf (y) ∈ Rd×d.

2

Sentence summarization

16.8%

17.2%

17.6%

18.0%

18.4%

softmax sparsemax fusedmax oscarmax sq-pnorm-max

BLEU

24.0%

24.5%

25.0%

25.5%

26.0%

softmax sparsemax fusedmax oscarmax sq-pnorm-max

ROUGE-L

Experiments based on Open-NMT  
using the Gigaword sentence summarization dataset

Sentence summarization

16.8%

17.2%

17.6%

18.0%

18.4%

softmax sparsemax fusedmax oscarmax sq-pnorm-max

BLEU

24.0%

24.5%

25.0%

25.5%

26.0%

softmax sparsemax fusedmax oscarmax sq-pnorm-max

ROUGE-L

Experiments based on Open-NMT  
using the Gigaword sentence summarization dataset

Sentence summarization

. Significant accuracy improvement 
 
. Greatly enhanced interpretability

Principled framework for  
differentiable argmax operators

argmaxΩ(θ) ≜ arg max
p∈△m

⟨p, θ⟩−Ω(p)

New interpretable 
attention mechanisms

Figure 3: Attention weights when considering the contradicted hypothesis “No one is dancing.”

fusedmax results in the most interpretable feature groupings: Figure 3 shows the weights of the
neural network’s attention to the text, when considering the hypothesis “No one is dancing.” In this
case, all four models correctly predicted that the text “A band is playing on stage at a concert and the
attendants are dancing to the music,” denoted along the x-axis, contradicts the hypothesis, although
the attention weights differ. Notably, fusedmax identifies the meaningful segment “band is playing”.

4.2 Machine translation experiments

Sequence-to-sequence neural machine translation (NMT) has recently become a strong contender in
machine translation [2, 29]. In NMT, attention weights can be seen as an alignment between source
and translated words. To demonstrate the potential of our new attention mechanisms for NMT, we ran
experiments on 10 language pairs. We build on OpenNMT-py [24], based on PyTorch [37], with all
default hyperparameters (detailed in Appendix C.3), simply replacing softmax with the proposed ΠΩ.

OpenNMT-py with softmax attention is optimized for the GPU. Since sparsemax, fusedmax, and
oscarmax rely on sorting operations, we implement their computations on the CPU for simplicity,
keeping the rest of the pipeline on the GPU. However, we observe that, even with this context
switching, the number of tokens processed per second was within 3/4 of the softmax pipeline. For
sq-pnorm-max, we observe that the projected gradient solver used in the forward pass, unlike the
linear system solver used in the backward pass, could become a computational bottleneck. To mitigate
this effect, we set the tolerance of the solver’s stopping criterion to 10−2.

Quantitatively, we find that all compared attention mechanisms are always within 1 BLEU score
point of the best mechanism (for detailed results, cf. Appendix C.3). This suggests that structured
sparsity does not restrict accuracy. However, as illustrated in Figure 4, fusedmax and oscarmax often
lead to more interpretable attention alignments, as well as to qualitatively different translations.

Figure 4: Attention weights for French to English translation, using the conventions of Figure 1.
Within a row, weights grouped by oscarmax under the same cluster are denoted by “•”. Here, oscarmax
finds a slightly more natural English translation. More visulizations are given in Appendix C.3.

4.3 Sentence summarization experiments

Attention mechanisms were recently explored for sentence summarization in [39]. To generate
sentence-summary pairs at low cost, the authors proposed to use the title of a news article as a
noisy summary of the article’s leading sentence. They collected 4 million such pairs from the
Gigaword dataset and showed that this seemingly simplistic approach leads to models that generalize

7

mechanism regularization Ω

softmax Shannon’s neg-entropy

sparsemax squared norm

fusedmax squared norm + fused lasso

Great accuracy  
on various  

applications

16.8%

17.2%

17.6%

18.0%

18.4%

softmax sparsemax fusedmax oscarmax sq-pnorm-max

BLEU

24.0%

24.5%

25.0%

25.5%

26.0%

softmax sparsemax fusedmax oscarmax sq-pnorm-max

ROUGE-L

Faster training by  
leveraging sparsity

attention time per epoch

softmax 1h 26m 40s ± 51s
sparsemax 1h 24m 21s ± 54s
fusedmax 1h 23m 58s ± 50s
oscarmax 1h 23m 19s ± 50s

Table 3: Timing results for training textual entailment on SNLI,
using the implementation and experimental setup from [31]. With
this C++ CPU implementation, fusedmax and oscarmax are as
fast as sparsemax, and all three sparse attention mechanisms are
slightly faster than softmax.

• BENCHMARK: Training, validation, and test data from the NMT-Benchmark project (http:
//scorer.nmt-benchmark.net/). All languages have ~1M training sentence pairs, and
equal validation and test sets of size 1K (French) and 2K (Italian, Dutch and Swedish).

• BENCHMARK+: Training and validation data as above, but testing on all available newstest
data. For Italian we use the 2009 data (~2.5K sentence pairs), and for French we concatenate
2009–2014 (~11K sentence pairs).

• WMT16, WMT17: Translation tasks at the first and second ACL Conferences for Machine
Translation, available at http://www.statmt.org/wmt16/translation-task.html
and http://www.statmt.org/wmt17/translation-task.html. Training, validation,
and test sizes are, approximately, for Romanian 400K/2K/2K, for German 5.8M/6K/3K, for
Finnish 2.6M/2K/2K, for Latvian 4.5M/2K/2K, and for Turkish 207K/1K/3K.

We use the preprocessing scripts from Moses [25] for tokenization, and, where needed, SGML
parsing. We limit source and target vocabulary sizes to 50K lower-cased tokens and prune sentences
longer than 50 tokens at training time and 100 tokens at test time. We do not perform recasing.

We report BLEU scores in Table 4 and showcase the enhanced interpretability induced by our
proposed attention mechanisms in Figure 7. Timing measurements can be found in Table 5.

Table 4: Neural machine translation results: tokenized BLEU scores on test data.
BENCHMARK BENCHMARK+ WMT16 WMT17

fr it nl sv fr it ro de fi lv tr

from English

softmax 36.94 37.20 36.12 34.97 27.13 24.86 17.71 22.32 14.54 11.02 11.95

sparsemax 37.03 37.21 36.12 35.09 26.99 24.49 17.61 22.43 14.85 11.07 11.66
fusedmax 37.08 36.73 36.04 34.30 26.89 24.47 17.19 22.25 14.28 11.27 11.32
oscarmax 36.66 36.89 35.96 34.86 27.02 24.76 17.26 22.42 14.02 11.19 11.63

sq-pnorm-max 37.16 37.39 36.21 34.63 27.25 24.56 17.80 —– 14.45 —– 11.58

to English

softmax 36.79 39.95 40.06 37.96 25.72 25.37 17.86 25.82 15.11 13.60 11.78
sparsemax 36.91 40.13 40.25 38.09 25.97 25.62 17.46 25.76 14.95 13.59 12.04

fusedmax 36.64 39.64 39.87 37.83 25.72 25.41 18.29 25.58 15.08 13.53 11.91
oscarmax 36.90 40.05 40.17 38.12 26.13 25.65 17.89 25.69 14.94 13.71 11.70

sq-pnorm-max 36.84 40.23 40.48 38.12 25.72 25.70 17.44 —– 15.20 —– 11.93

attention time per epoch

softmax 2h
sparsemax 2h 18m
fusedmax 3h 5m
oscarmax 3h 25m

sq-pnorm-max 7h 5m

Table 5: Timing results for French-to-English translation using
OpenNMT-py (all standard errors are under 2 minutes). For sim-
plicity, all attention mechanisms, except softmax, are implemented
on the CPU, thus incurring memory copies in both directions. (The
rest of the pipeline runs on the GPU.) Even without special opti-
mization, sparsemax, fusedmax, and oscarmax are practical, taking
within 1.75x the training time of a softmax model on the GPU.

17

Summary so far

Outline

1. Structured attention

2. Differentiable dynamic programming

Soft structured predictionSoft Viterbi algorithm: sequence tagging

Soft structured predictionSoft Viterbi algorithm: sequence tagging

She sells sea shells

Unregularized

CAT1

CAT2

CAT3

one path in the DAG = one possible tag sequence

She sells sea shells

Entropic regularization

⇔ Linear-chain CRF 
(Lafferty et al., 2001)

Soft structured predictionSoft Viterbi algorithm: sequence tagging

She sells sea shells

Unregularized

CAT1

CAT2

CAT3

one path in the DAG = one possible tag sequence

She sells sea shells

Quadratic regularization 
(Mensch & Blondel, 2018)

Sparse sequence distribution

She sells sea shells

Entropic regularization

⇔ Linear-chain CRF 
(Lafferty et al., 2001)

Soft structured predictionSoft Viterbi algorithm: sequence tagging

She sells sea shells

Unregularized

CAT1

CAT2

CAT3

one path in the DAG = one possible tag sequence

Soft DTW: time series alignment
DTW = Dynamic Time Warping [Sakoe & Chiba, 1978]

Soft DTW: time series alignment
DTW = Dynamic Time Warping [Sakoe & Chiba, 1978]

start

1,1
✓1,1

2,1

1,2

3,1

1,3

2,2
✓2,2

2,3
✓2,3

3,2

1,4

2,4

3,3

✓3,3

3,4
✓3,4

end

Entropic regularization

⇔ Soft-DTW

(Cuturi & Blondel, 2017)

one path in the DAG  
=  

one possible monotonic time-series alignment

start

1,1
✓1,1

2,1

1,2

3,1

1,3

2,2
✓2,2

2,3
✓2,3

3,2

1,4

2,4

3,3

✓3,3

3,4
✓3,4

end

Quadratic regularization 
(Mensch & Blondel, 2018)

Sparse alignment distribution

Soft DTW: time series alignment
DTW = Dynamic Time Warping [Sakoe & Chiba, 1978]

start

1,1
✓1,1

2,1

1,2

3,1

1,3

2,2
✓2,2

2,3
✓2,3

3,2

1,4

2,4

3,3

✓3,3

3,4
✓3,4

end

Entropic regularization

⇔ Soft-DTW

(Cuturi & Blondel, 2017)

one path in the DAG  
=  

one possible monotonic time-series alignment

Di↵erentiable Dynamic Programming for Structured Prediction and Attention 2

Differentiable Dynamic Programming for Structured Prediction and Attention

Figure 1. ToDo

tions of our framework, a smoothed Viterbi algorithm for
sequence prediction and a smoothed DTW algorithm for
supervised time-series alignment (§4). We showcase these
two instantiations on structured prediction tasks (§5) and
on structured attention for neural machine translation (6).

DTW�H(✓) = �7.49

Notation. We denote scalars, vectors and matrices using
lower-case, bold lower-case and bold upper-case letters,
e.g., y, y and Y , respectively. Given a matrix Y , we de-
note its elements by yi,j and its rows by yi. We denote the
Frobenius inner product between two matrices A and B by
hA,Bi , P

i,j
ai,jbi,j . We write the (D � 1)-probability

simplex by 4
D , {� 2 RD

+ : k�k1 = 1}. We denote
conv(Y) , {

P
Y 2Y �Y Y : � 2 4

|Y|
} the convex hull

of Y and [N] the set {1, . . . , N}. We denote the Shannon
entropy by H(q) , P

i
qi log qi.

2. Smoothed max operators

Smoothed max operators (Nesterov, 2005; Niculae & Blon-
del, 2017), as their name indicates, are smooth approx-
imations of max operators. These operators will serve
as a powerful and generic abstraction to define differen-
tiable dynamic programming layers in §3. Formally, let
⌦ : RD

! R be a strongly convex regularizer and x 2 RD.
Then, we define the max operator smoothed by ⌦ as:

max⌦(x) , max
q24D

hq,xi � ⌦(q). (1)

In other words, max⌦ is the convex conjugate of ⌦, re-
stricted to the simplex. By the duality between strong con-
vexity and smoothness, max⌦ is smooth (differentiable ev-
erywhere and with Lipschitz continuous gradient). Since
the argument that achieves the maximum in (1) is unique,
as per Danskin’s theorem, it equals the gradient of max⌦:

rmax⌦(x) = argmax
q24D

hq,xi � ⌦(q).

By Rademacher’s theorem, rmax⌦(x) is differentiable al-
most everywhere. We will denote Clarke’s generalized Ja-
cobian of rmax⌦(x), or equivalently the generalized Hes-
sian of max⌦(x), by r

2max⌦(x). Next, we state several
properties that will be useful throughout this paper.

Lemma 1. Properties of max⌦ operators

Let x = (x1, . . . , xD)> 2 RD
.

1. Boundedness: If ⌦ is lower-bounded by L⌦,D and

upper-bounded by U⌦,D on the simplex 4
D

, then

max(x)� U⌦,D max⌦(x) max(x)� L⌦,D.

2. Distributivity of + over max⌦:

max⌦(x+ c1) = max⌦(x) + c 8c 2 R.

3. Commutativity: If ⌦(Pq) = ⌦(q), where P is a per-

mutation matrix, then max⌦(Px) = max⌦(x).

4. Non-decreasingness in each coordinate:

max⌦(x) max⌦(y) 8x y

5. Insensitivity to �1: xj = �1) rmax⌦(x)j = 0.

Proofs are given in §A.1. In particular, property 3 holds
whenever ⌦(q) =

P
D

i=1 !(qi), for some function !. We
focus in this paper on two specific regularizers ⌦: negen-
tropy and squared `2 norm. For these choices, all properties
above are satisfied and we can derive closed-form expres-
sions for max⌦, its gradient and its Hessian — see §B.1.
When using negentropy, max⌦ becomes the log-sum-exp.
This operator satisfies associativity, which as we shall see,
makes it natural to use in dynamic programming. With the
squared `2 regularization, as observed by Martins & As-
tudillo (2016), the gradient rmax⌦ is sparse. This will
prove useful to impose sparsity in the models we study.

3. Differentiable DP layers

Dynamic programing (DP) is a generic way of solving
combinatorial optimization problems by recursively solv-
ing problems on smaller sets. We first introduce this cat-
egory of algorithms in a broad setting, then use smoothed
max operators to define differentiable DP layers.

3.1. Dynamic programming on a DAG

The archetype case of dynamic programing, to which ev-
ery problem that it solves can be reduced, is the computa-
tion of the highest-scoring path between a start node and an
end node, on a weighted directed acyclic graph (DAG). We
therefore introduce our formalism on this generic problem,
and give concrete examples in §4.

Formally, let G = (V, E) be a DAG, with nodes V and
edges E . We write N = |V| � 2 the number of nodes.
Without loss of generality, we number the nodes in topo-
logical order, from 1 (start) to N (end), and thus V = [N].
Node 1 is the only node without parents, and node N the
only node without children. Every directed edge (i, j) from
a parent node j to a child node i has a weight ✓i,j 2 R. We
gather the edge weights in a matrix ✓ 2 ⇥ ✓ RN⇥N , set-
ting ✓i,j = �1 if (i, j) /2 E and ✓1,1 = 1. We consider

Differentiable Dynamic Programming for Structured Prediction and Attention

Figure 1. ToDo

tions of our framework, a smoothed Viterbi algorithm for
sequence prediction and a smoothed DTW algorithm for
supervised time-series alignment (§4). We showcase these
two instantiations on structured prediction tasks (§5) and
on structured attention for neural machine translation (6).

DTWk·k2(✓) = 9.61

Notation. We denote scalars, vectors and matrices using
lower-case, bold lower-case and bold upper-case letters,
e.g., y, y and Y , respectively. Given a matrix Y , we de-
note its elements by yi,j and its rows by yi. We denote the
Frobenius inner product between two matrices A and B by
hA,Bi , P

i,j
ai,jbi,j . We write the (D � 1)-probability

simplex by 4
D , {� 2 RD

+ : k�k1 = 1}. We denote
conv(Y) , {

P
Y 2Y �Y Y : � 2 4

|Y|
} the convex hull

of Y and [N] the set {1, . . . , N}. We denote the Shannon
entropy by H(q) , P

i
qi log qi.

2. Smoothed max operators

Smoothed max operators (Nesterov, 2005; Niculae & Blon-
del, 2017), as their name indicates, are smooth approx-
imations of max operators. These operators will serve
as a powerful and generic abstraction to define differen-
tiable dynamic programming layers in §3. Formally, let
⌦ : RD

! R be a strongly convex regularizer and x 2 RD.
Then, we define the max operator smoothed by ⌦ as:

max⌦(x) , max
q24D

hq,xi � ⌦(q). (1)

In other words, max⌦ is the convex conjugate of ⌦, re-
stricted to the simplex. By the duality between strong con-
vexity and smoothness, max⌦ is smooth (differentiable ev-
erywhere and with Lipschitz continuous gradient). Since
the argument that achieves the maximum in (1) is unique,
as per Danskin’s theorem, it equals the gradient of max⌦:

rmax⌦(x) = argmax
q24D

hq,xi � ⌦(q).

By Rademacher’s theorem, rmax⌦(x) is differentiable al-
most everywhere. We will denote Clarke’s generalized Ja-
cobian of rmax⌦(x), or equivalently the generalized Hes-
sian of max⌦(x), by r

2max⌦(x). Next, we state several
properties that will be useful throughout this paper.

Lemma 1. Properties of max⌦ operators

Let x = (x1, . . . , xD)> 2 RD
.

1. Boundedness: If ⌦ is lower-bounded by L⌦,D and

upper-bounded by U⌦,D on the simplex 4
D

, then

max(x)� U⌦,D max⌦(x) max(x)� L⌦,D.

2. Distributivity of + over max⌦:

max⌦(x+ c1) = max⌦(x) + c 8c 2 R.

3. Commutativity: If ⌦(Pq) = ⌦(q), where P is a per-

mutation matrix, then max⌦(Px) = max⌦(x).

4. Non-decreasingness in each coordinate:

max⌦(x) max⌦(y) 8x y

5. Insensitivity to �1: xj = �1) rmax⌦(x)j = 0.

Proofs are given in §A.1. In particular, property 3 holds
whenever ⌦(q) =

P
D

i=1 !(qi), for some function !. We
focus in this paper on two specific regularizers ⌦: negen-
tropy and squared `2 norm. For these choices, all properties
above are satisfied and we can derive closed-form expres-
sions for max⌦, its gradient and its Hessian — see §B.1.
When using negentropy, max⌦ becomes the log-sum-exp.
This operator satisfies associativity, which as we shall see,
makes it natural to use in dynamic programming. With the
squared `2 regularization, as observed by Martins & As-
tudillo (2016), the gradient rmax⌦ is sparse. This will
prove useful to impose sparsity in the models we study.

3. Differentiable DP layers

Dynamic programing (DP) is a generic way of solving
combinatorial optimization problems by recursively solv-
ing problems on smaller sets. We first introduce this cat-
egory of algorithms in a broad setting, then use smoothed
max operators to define differentiable DP layers.

3.1. Dynamic programming on a DAG

The archetype case of dynamic programing, to which ev-
ery problem that it solves can be reduced, is the computa-
tion of the highest-scoring path between a start node and an
end node, on a weighted directed acyclic graph (DAG). We
therefore introduce our formalism on this generic problem,
and give concrete examples in §4.

Formally, let G = (V, E) be a DAG, with nodes V and
edges E . We write N = |V| � 2 the number of nodes.
Without loss of generality, we number the nodes in topo-
logical order, from 1 (start) to N (end), and thus V = [N].
Node 1 is the only node without parents, and node N the
only node without children. Every directed edge (i, j) from
a parent node j to a child node i has a weight ✓i,j 2 R. We
gather the edge weights in a matrix ✓ 2 ⇥ ✓ RN⇥N , set-
ting ✓i,j = �1 if (i, j) /2 E and ✓1,1 = 1. We consider

Figure 1: DTW⌦(✓) is an instantiation of the proposed smoothed dynamic programming operator, DP⌦(✓),
to the dynamic time warping (DTW) computational graph. In this picture, ✓ is the squared Euclidean
distance matrix between the observations of two time-series. The gradient rDTW⌦(✓) is equal to the
expected alignment under a certain random walk characterized in §3.3 and is a sound continuous relaxation to
the hard DTW alignment between the two time-series (here depicted with a yellow path). Unlike negentropy
regularization (left), `22 regularization leads to exactly sparse alignments (right). Our framework allows to
backpropagate through both DTW⌦(✓) and rDTW⌦(✓), which makes it possible to learn the distance
matrix ✓ end-to-end.

of conditional random fields (CRFs) (La↵erty et al., 2001), which can be seen as changing the semiring
used by the dynamic program — replacing all values by their exponentials and all (max,+) operations with
(+,⇥) operations (Verdu & Poor, 1987). While this modification smoothes the dynamic program, it looses
the sparsity of solutions, since hard assignments become soft ones. Moreover, a general understanding of
how to relax and di↵erentiate dynamic programs is lacking. In this work, we propose to do so by leveraging
smoothing (Moreau, 1965; Nesterov, 2005) and backpropagation (Linnainmaa, 1970). We make the following
contributions.

1) We present a unified framework for turning a broad class of dynamic programs (DP) into di↵erentiable
operators. Unlike existing works, we propose to change the semiring to use (max⌦,+) operations, where
max⌦ is a max operator smoothed with a strongly convex regularizer ⌦ (§2).

2) We show that the resulting DP operators, that we call DP⌦, are smoothed relaxations of the original DP
algorithm and satisfy several key properties, chief among them convexity. In addition, we show that their
gradient, rDP⌦, is equal to the expected trajectory of a certain random walk and can be used as a sound
relaxation to the original dynamic program’s solution. Using negative entropy for ⌦ recovers existing CRF-
based works from a di↵erent perspective — we provide new arguments as to why this ⌦ is a good choice.
On the other hand, using squared `2 norm for ⌦ leads to new algorithms whose expected solution is sparse.
We derive a clean and e�cient method to backpropagate gradients, both through DP⌦ and rDP⌦. This
allows us to define di↵erentiable DP layers that can be incorporated in neural networks trained end-to-end
(§3).

3) We illustrate how to to derive two particular instantiations of our framework, a smoothed Viterbi algo-
rithm for sequence prediction and a smoothed DTW algorithm for supervised time-series alignment (§4).
The latter is illustrated in Figure 1. Finally, we showcase these two instantiations on structured prediction
tasks (§5) and on structured attention for neural machine translation (§6).

Notation. We denote scalars, vectors and matrices using lower-case, bold lower-case and bold upper-case
letters, e.g., y, y and Y . We denote the elements of Y by yi,j and its rows by yi. We denote the Frobenius
inner product between A and B by hA,Bi , P

i,j
ai,jbi,j . We denote the (D � 1)-probability simplex by

4
D , {� 2 RD

+ : k�k1 = 1}. We write conv(Y) , {
P

Y 2Y �Y Y : � 2 4
|Y|

} the convex hull of Y, [N] the

set {1, . . . , N} and supp(x) , {j 2 [D] : xj 6= 0} the support of x 2 RD. We denote the Shannon entropy
by H(q) , P

i
qi log qi.

We will release an optimized modular PyTorch implementation for reproduction and reuse.

Entropic regularization

(Cuturi & Blondel, 2017)

Hard solution (DTW alignment) Soft solution (expected alignment 𝔼p[Y])

Expected Alignment (Path)

Di↵erentiable Dynamic Programming for Structured Prediction and Attention 2

Differentiable Dynamic Programming for Structured Prediction and Attention

Figure 1. ToDo

tions of our framework, a smoothed Viterbi algorithm for
sequence prediction and a smoothed DTW algorithm for
supervised time-series alignment (§4). We showcase these
two instantiations on structured prediction tasks (§5) and
on structured attention for neural machine translation (6).

DTW�H(✓) = �7.49

Notation. We denote scalars, vectors and matrices using
lower-case, bold lower-case and bold upper-case letters,
e.g., y, y and Y , respectively. Given a matrix Y , we de-
note its elements by yi,j and its rows by yi. We denote the
Frobenius inner product between two matrices A and B by
hA,Bi , P

i,j
ai,jbi,j . We write the (D � 1)-probability

simplex by 4
D , {� 2 RD

+ : k�k1 = 1}. We denote
conv(Y) , {

P
Y 2Y �Y Y : � 2 4

|Y|
} the convex hull

of Y and [N] the set {1, . . . , N}. We denote the Shannon
entropy by H(q) , P

i
qi log qi.

2. Smoothed max operators

Smoothed max operators (Nesterov, 2005; Niculae & Blon-
del, 2017), as their name indicates, are smooth approx-
imations of max operators. These operators will serve
as a powerful and generic abstraction to define differen-
tiable dynamic programming layers in §3. Formally, let
⌦ : RD

! R be a strongly convex regularizer and x 2 RD.
Then, we define the max operator smoothed by ⌦ as:

max⌦(x) , max
q24D

hq,xi � ⌦(q). (1)

In other words, max⌦ is the convex conjugate of ⌦, re-
stricted to the simplex. By the duality between strong con-
vexity and smoothness, max⌦ is smooth (differentiable ev-
erywhere and with Lipschitz continuous gradient). Since
the argument that achieves the maximum in (1) is unique,
as per Danskin’s theorem, it equals the gradient of max⌦:

rmax⌦(x) = argmax
q24D

hq,xi � ⌦(q).

By Rademacher’s theorem, rmax⌦(x) is differentiable al-
most everywhere. We will denote Clarke’s generalized Ja-
cobian of rmax⌦(x), or equivalently the generalized Hes-
sian of max⌦(x), by r

2max⌦(x). Next, we state several
properties that will be useful throughout this paper.

Lemma 1. Properties of max⌦ operators

Let x = (x1, . . . , xD)> 2 RD
.

1. Boundedness: If ⌦ is lower-bounded by L⌦,D and

upper-bounded by U⌦,D on the simplex 4
D

, then

max(x)� U⌦,D max⌦(x) max(x)� L⌦,D.

2. Distributivity of + over max⌦:

max⌦(x+ c1) = max⌦(x) + c 8c 2 R.

3. Commutativity: If ⌦(Pq) = ⌦(q), where P is a per-

mutation matrix, then max⌦(Px) = max⌦(x).

4. Non-decreasingness in each coordinate:

max⌦(x) max⌦(y) 8x y

5. Insensitivity to �1: xj = �1) rmax⌦(x)j = 0.

Proofs are given in §A.1. In particular, property 3 holds
whenever ⌦(q) =

P
D

i=1 !(qi), for some function !. We
focus in this paper on two specific regularizers ⌦: negen-
tropy and squared `2 norm. For these choices, all properties
above are satisfied and we can derive closed-form expres-
sions for max⌦, its gradient and its Hessian — see §B.1.
When using negentropy, max⌦ becomes the log-sum-exp.
This operator satisfies associativity, which as we shall see,
makes it natural to use in dynamic programming. With the
squared `2 regularization, as observed by Martins & As-
tudillo (2016), the gradient rmax⌦ is sparse. This will
prove useful to impose sparsity in the models we study.

3. Differentiable DP layers

Dynamic programing (DP) is a generic way of solving
combinatorial optimization problems by recursively solv-
ing problems on smaller sets. We first introduce this cat-
egory of algorithms in a broad setting, then use smoothed
max operators to define differentiable DP layers.

3.1. Dynamic programming on a DAG

The archetype case of dynamic programing, to which ev-
ery problem that it solves can be reduced, is the computa-
tion of the highest-scoring path between a start node and an
end node, on a weighted directed acyclic graph (DAG). We
therefore introduce our formalism on this generic problem,
and give concrete examples in §4.

Formally, let G = (V, E) be a DAG, with nodes V and
edges E . We write N = |V| � 2 the number of nodes.
Without loss of generality, we number the nodes in topo-
logical order, from 1 (start) to N (end), and thus V = [N].
Node 1 is the only node without parents, and node N the
only node without children. Every directed edge (i, j) from
a parent node j to a child node i has a weight ✓i,j 2 R. We
gather the edge weights in a matrix ✓ 2 ⇥ ✓ RN⇥N , set-
ting ✓i,j = �1 if (i, j) /2 E and ✓1,1 = 1. We consider

Differentiable Dynamic Programming for Structured Prediction and Attention

Figure 1. ToDo

tions of our framework, a smoothed Viterbi algorithm for
sequence prediction and a smoothed DTW algorithm for
supervised time-series alignment (§4). We showcase these
two instantiations on structured prediction tasks (§5) and
on structured attention for neural machine translation (6).

DTWk·k2(✓) = 9.61

Notation. We denote scalars, vectors and matrices using
lower-case, bold lower-case and bold upper-case letters,
e.g., y, y and Y , respectively. Given a matrix Y , we de-
note its elements by yi,j and its rows by yi. We denote the
Frobenius inner product between two matrices A and B by
hA,Bi , P

i,j
ai,jbi,j . We write the (D � 1)-probability

simplex by 4
D , {� 2 RD

+ : k�k1 = 1}. We denote
conv(Y) , {

P
Y 2Y �Y Y : � 2 4

|Y|
} the convex hull

of Y and [N] the set {1, . . . , N}. We denote the Shannon
entropy by H(q) , P

i
qi log qi.

2. Smoothed max operators

Smoothed max operators (Nesterov, 2005; Niculae & Blon-
del, 2017), as their name indicates, are smooth approx-
imations of max operators. These operators will serve
as a powerful and generic abstraction to define differen-
tiable dynamic programming layers in §3. Formally, let
⌦ : RD

! R be a strongly convex regularizer and x 2 RD.
Then, we define the max operator smoothed by ⌦ as:

max⌦(x) , max
q24D

hq,xi � ⌦(q). (1)

In other words, max⌦ is the convex conjugate of ⌦, re-
stricted to the simplex. By the duality between strong con-
vexity and smoothness, max⌦ is smooth (differentiable ev-
erywhere and with Lipschitz continuous gradient). Since
the argument that achieves the maximum in (1) is unique,
as per Danskin’s theorem, it equals the gradient of max⌦:

rmax⌦(x) = argmax
q24D

hq,xi � ⌦(q).

By Rademacher’s theorem, rmax⌦(x) is differentiable al-
most everywhere. We will denote Clarke’s generalized Ja-
cobian of rmax⌦(x), or equivalently the generalized Hes-
sian of max⌦(x), by r

2max⌦(x). Next, we state several
properties that will be useful throughout this paper.

Lemma 1. Properties of max⌦ operators

Let x = (x1, . . . , xD)> 2 RD
.

1. Boundedness: If ⌦ is lower-bounded by L⌦,D and

upper-bounded by U⌦,D on the simplex 4
D

, then

max(x)� U⌦,D max⌦(x) max(x)� L⌦,D.

2. Distributivity of + over max⌦:

max⌦(x+ c1) = max⌦(x) + c 8c 2 R.

3. Commutativity: If ⌦(Pq) = ⌦(q), where P is a per-

mutation matrix, then max⌦(Px) = max⌦(x).

4. Non-decreasingness in each coordinate:

max⌦(x) max⌦(y) 8x y

5. Insensitivity to �1: xj = �1) rmax⌦(x)j = 0.

Proofs are given in §A.1. In particular, property 3 holds
whenever ⌦(q) =

P
D

i=1 !(qi), for some function !. We
focus in this paper on two specific regularizers ⌦: negen-
tropy and squared `2 norm. For these choices, all properties
above are satisfied and we can derive closed-form expres-
sions for max⌦, its gradient and its Hessian — see §B.1.
When using negentropy, max⌦ becomes the log-sum-exp.
This operator satisfies associativity, which as we shall see,
makes it natural to use in dynamic programming. With the
squared `2 regularization, as observed by Martins & As-
tudillo (2016), the gradient rmax⌦ is sparse. This will
prove useful to impose sparsity in the models we study.

3. Differentiable DP layers

Dynamic programing (DP) is a generic way of solving
combinatorial optimization problems by recursively solv-
ing problems on smaller sets. We first introduce this cat-
egory of algorithms in a broad setting, then use smoothed
max operators to define differentiable DP layers.

3.1. Dynamic programming on a DAG

The archetype case of dynamic programing, to which ev-
ery problem that it solves can be reduced, is the computa-
tion of the highest-scoring path between a start node and an
end node, on a weighted directed acyclic graph (DAG). We
therefore introduce our formalism on this generic problem,
and give concrete examples in §4.

Formally, let G = (V, E) be a DAG, with nodes V and
edges E . We write N = |V| � 2 the number of nodes.
Without loss of generality, we number the nodes in topo-
logical order, from 1 (start) to N (end), and thus V = [N].
Node 1 is the only node without parents, and node N the
only node without children. Every directed edge (i, j) from
a parent node j to a child node i has a weight ✓i,j 2 R. We
gather the edge weights in a matrix ✓ 2 ⇥ ✓ RN⇥N , set-
ting ✓i,j = �1 if (i, j) /2 E and ✓1,1 = 1. We consider

Figure 1: DTW⌦(✓) is an instantiation of the proposed smoothed dynamic programming operator, DP⌦(✓),
to the dynamic time warping (DTW) computational graph. In this picture, ✓ is the squared Euclidean
distance matrix between the observations of two time-series. The gradient rDTW⌦(✓) is equal to the
expected alignment under a certain random walk characterized in §3.3 and is a sound continuous relaxation to
the hard DTW alignment between the two time-series (here depicted with a yellow path). Unlike negentropy
regularization (left), `22 regularization leads to exactly sparse alignments (right). Our framework allows to
backpropagate through both DTW⌦(✓) and rDTW⌦(✓), which makes it possible to learn the distance
matrix ✓ end-to-end.

of conditional random fields (CRFs) (La↵erty et al., 2001), which can be seen as changing the semiring
used by the dynamic program — replacing all values by their exponentials and all (max,+) operations with
(+,⇥) operations (Verdu & Poor, 1987). While this modification smoothes the dynamic program, it looses
the sparsity of solutions, since hard assignments become soft ones. Moreover, a general understanding of
how to relax and di↵erentiate dynamic programs is lacking. In this work, we propose to do so by leveraging
smoothing (Moreau, 1965; Nesterov, 2005) and backpropagation (Linnainmaa, 1970). We make the following
contributions.

1) We present a unified framework for turning a broad class of dynamic programs (DP) into di↵erentiable
operators. Unlike existing works, we propose to change the semiring to use (max⌦,+) operations, where
max⌦ is a max operator smoothed with a strongly convex regularizer ⌦ (§2).

2) We show that the resulting DP operators, that we call DP⌦, are smoothed relaxations of the original DP
algorithm and satisfy several key properties, chief among them convexity. In addition, we show that their
gradient, rDP⌦, is equal to the expected trajectory of a certain random walk and can be used as a sound
relaxation to the original dynamic program’s solution. Using negative entropy for ⌦ recovers existing CRF-
based works from a di↵erent perspective — we provide new arguments as to why this ⌦ is a good choice.
On the other hand, using squared `2 norm for ⌦ leads to new algorithms whose expected solution is sparse.
We derive a clean and e�cient method to backpropagate gradients, both through DP⌦ and rDP⌦. This
allows us to define di↵erentiable DP layers that can be incorporated in neural networks trained end-to-end
(§3).

3) We illustrate how to to derive two particular instantiations of our framework, a smoothed Viterbi algo-
rithm for sequence prediction and a smoothed DTW algorithm for supervised time-series alignment (§4).
The latter is illustrated in Figure 1. Finally, we showcase these two instantiations on structured prediction
tasks (§5) and on structured attention for neural machine translation (§6).

Notation. We denote scalars, vectors and matrices using lower-case, bold lower-case and bold upper-case
letters, e.g., y, y and Y . We denote the elements of Y by yi,j and its rows by yi. We denote the Frobenius
inner product between A and B by hA,Bi , P

i,j
ai,jbi,j . We denote the (D � 1)-probability simplex by

4
D , {� 2 RD

+ : k�k1 = 1}. We write conv(Y) , {
P

Y 2Y �Y Y : � 2 4
|Y|

} the convex hull of Y, [N] the

set {1, . . . , N} and supp(x) , {j 2 [D] : xj 6= 0} the support of x 2 RD. We denote the Shannon entropy
by H(q) , P

i
qi log qi.

We will release an optimized modular PyTorch implementation for reproduction and reuse.

Entropic regularization

(Cuturi & Blondel, 2017)

Hard solution (DTW alignment)

Di↵erentiable Dynamic Programming for Structured Prediction and Attention 2

Differentiable Dynamic Programming for Structured Prediction and Attention

Figure 1. ToDo

tions of our framework, a smoothed Viterbi algorithm for
sequence prediction and a smoothed DTW algorithm for
supervised time-series alignment (§4). We showcase these
two instantiations on structured prediction tasks (§5) and
on structured attention for neural machine translation (6).

DTW�H(✓) = �7.49

Notation. We denote scalars, vectors and matrices using
lower-case, bold lower-case and bold upper-case letters,
e.g., y, y and Y , respectively. Given a matrix Y , we de-
note its elements by yi,j and its rows by yi. We denote the
Frobenius inner product between two matrices A and B by
hA,Bi , P

i,j
ai,jbi,j . We write the (D � 1)-probability

simplex by 4
D , {� 2 RD

+ : k�k1 = 1}. We denote
conv(Y) , {

P
Y 2Y �Y Y : � 2 4

|Y|
} the convex hull

of Y and [N] the set {1, . . . , N}. We denote the Shannon
entropy by H(q) , P

i
qi log qi.

2. Smoothed max operators

Smoothed max operators (Nesterov, 2005; Niculae & Blon-
del, 2017), as their name indicates, are smooth approx-
imations of max operators. These operators will serve
as a powerful and generic abstraction to define differen-
tiable dynamic programming layers in §3. Formally, let
⌦ : RD

! R be a strongly convex regularizer and x 2 RD.
Then, we define the max operator smoothed by ⌦ as:

max⌦(x) , max
q24D

hq,xi � ⌦(q). (1)

In other words, max⌦ is the convex conjugate of ⌦, re-
stricted to the simplex. By the duality between strong con-
vexity and smoothness, max⌦ is smooth (differentiable ev-
erywhere and with Lipschitz continuous gradient). Since
the argument that achieves the maximum in (1) is unique,
as per Danskin’s theorem, it equals the gradient of max⌦:

rmax⌦(x) = argmax
q24D

hq,xi � ⌦(q).

By Rademacher’s theorem, rmax⌦(x) is differentiable al-
most everywhere. We will denote Clarke’s generalized Ja-
cobian of rmax⌦(x), or equivalently the generalized Hes-
sian of max⌦(x), by r

2max⌦(x). Next, we state several
properties that will be useful throughout this paper.

Lemma 1. Properties of max⌦ operators

Let x = (x1, . . . , xD)> 2 RD
.

1. Boundedness: If ⌦ is lower-bounded by L⌦,D and

upper-bounded by U⌦,D on the simplex 4
D

, then

max(x)� U⌦,D max⌦(x) max(x)� L⌦,D.

2. Distributivity of + over max⌦:

max⌦(x+ c1) = max⌦(x) + c 8c 2 R.

3. Commutativity: If ⌦(Pq) = ⌦(q), where P is a per-

mutation matrix, then max⌦(Px) = max⌦(x).

4. Non-decreasingness in each coordinate:

max⌦(x) max⌦(y) 8x y

5. Insensitivity to �1: xj = �1) rmax⌦(x)j = 0.

Proofs are given in §A.1. In particular, property 3 holds
whenever ⌦(q) =

P
D

i=1 !(qi), for some function !. We
focus in this paper on two specific regularizers ⌦: negen-
tropy and squared `2 norm. For these choices, all properties
above are satisfied and we can derive closed-form expres-
sions for max⌦, its gradient and its Hessian — see §B.1.
When using negentropy, max⌦ becomes the log-sum-exp.
This operator satisfies associativity, which as we shall see,
makes it natural to use in dynamic programming. With the
squared `2 regularization, as observed by Martins & As-
tudillo (2016), the gradient rmax⌦ is sparse. This will
prove useful to impose sparsity in the models we study.

3. Differentiable DP layers

Dynamic programing (DP) is a generic way of solving
combinatorial optimization problems by recursively solv-
ing problems on smaller sets. We first introduce this cat-
egory of algorithms in a broad setting, then use smoothed
max operators to define differentiable DP layers.

3.1. Dynamic programming on a DAG

The archetype case of dynamic programing, to which ev-
ery problem that it solves can be reduced, is the computa-
tion of the highest-scoring path between a start node and an
end node, on a weighted directed acyclic graph (DAG). We
therefore introduce our formalism on this generic problem,
and give concrete examples in §4.

Formally, let G = (V, E) be a DAG, with nodes V and
edges E . We write N = |V| � 2 the number of nodes.
Without loss of generality, we number the nodes in topo-
logical order, from 1 (start) to N (end), and thus V = [N].
Node 1 is the only node without parents, and node N the
only node without children. Every directed edge (i, j) from
a parent node j to a child node i has a weight ✓i,j 2 R. We
gather the edge weights in a matrix ✓ 2 ⇥ ✓ RN⇥N , set-
ting ✓i,j = �1 if (i, j) /2 E and ✓1,1 = 1. We consider

Differentiable Dynamic Programming for Structured Prediction and Attention

Figure 1. ToDo

tions of our framework, a smoothed Viterbi algorithm for
sequence prediction and a smoothed DTW algorithm for
supervised time-series alignment (§4). We showcase these
two instantiations on structured prediction tasks (§5) and
on structured attention for neural machine translation (6).

DTWk·k2(✓) = 9.61

Notation. We denote scalars, vectors and matrices using
lower-case, bold lower-case and bold upper-case letters,
e.g., y, y and Y , respectively. Given a matrix Y , we de-
note its elements by yi,j and its rows by yi. We denote the
Frobenius inner product between two matrices A and B by
hA,Bi , P

i,j
ai,jbi,j . We write the (D � 1)-probability

simplex by 4
D , {� 2 RD

+ : k�k1 = 1}. We denote
conv(Y) , {

P
Y 2Y �Y Y : � 2 4

|Y|
} the convex hull

of Y and [N] the set {1, . . . , N}. We denote the Shannon
entropy by H(q) , P

i
qi log qi.

2. Smoothed max operators

Smoothed max operators (Nesterov, 2005; Niculae & Blon-
del, 2017), as their name indicates, are smooth approx-
imations of max operators. These operators will serve
as a powerful and generic abstraction to define differen-
tiable dynamic programming layers in §3. Formally, let
⌦ : RD

! R be a strongly convex regularizer and x 2 RD.
Then, we define the max operator smoothed by ⌦ as:

max⌦(x) , max
q24D

hq,xi � ⌦(q). (1)

In other words, max⌦ is the convex conjugate of ⌦, re-
stricted to the simplex. By the duality between strong con-
vexity and smoothness, max⌦ is smooth (differentiable ev-
erywhere and with Lipschitz continuous gradient). Since
the argument that achieves the maximum in (1) is unique,
as per Danskin’s theorem, it equals the gradient of max⌦:

rmax⌦(x) = argmax
q24D

hq,xi � ⌦(q).

By Rademacher’s theorem, rmax⌦(x) is differentiable al-
most everywhere. We will denote Clarke’s generalized Ja-
cobian of rmax⌦(x), or equivalently the generalized Hes-
sian of max⌦(x), by r

2max⌦(x). Next, we state several
properties that will be useful throughout this paper.

Lemma 1. Properties of max⌦ operators

Let x = (x1, . . . , xD)> 2 RD
.

1. Boundedness: If ⌦ is lower-bounded by L⌦,D and

upper-bounded by U⌦,D on the simplex 4
D

, then

max(x)� U⌦,D max⌦(x) max(x)� L⌦,D.

2. Distributivity of + over max⌦:

max⌦(x+ c1) = max⌦(x) + c 8c 2 R.

3. Commutativity: If ⌦(Pq) = ⌦(q), where P is a per-

mutation matrix, then max⌦(Px) = max⌦(x).

4. Non-decreasingness in each coordinate:

max⌦(x) max⌦(y) 8x y

5. Insensitivity to �1: xj = �1) rmax⌦(x)j = 0.

Proofs are given in §A.1. In particular, property 3 holds
whenever ⌦(q) =

P
D

i=1 !(qi), for some function !. We
focus in this paper on two specific regularizers ⌦: negen-
tropy and squared `2 norm. For these choices, all properties
above are satisfied and we can derive closed-form expres-
sions for max⌦, its gradient and its Hessian — see §B.1.
When using negentropy, max⌦ becomes the log-sum-exp.
This operator satisfies associativity, which as we shall see,
makes it natural to use in dynamic programming. With the
squared `2 regularization, as observed by Martins & As-
tudillo (2016), the gradient rmax⌦ is sparse. This will
prove useful to impose sparsity in the models we study.

3. Differentiable DP layers

Dynamic programing (DP) is a generic way of solving
combinatorial optimization problems by recursively solv-
ing problems on smaller sets. We first introduce this cat-
egory of algorithms in a broad setting, then use smoothed
max operators to define differentiable DP layers.

3.1. Dynamic programming on a DAG

The archetype case of dynamic programing, to which ev-
ery problem that it solves can be reduced, is the computa-
tion of the highest-scoring path between a start node and an
end node, on a weighted directed acyclic graph (DAG). We
therefore introduce our formalism on this generic problem,
and give concrete examples in §4.

Formally, let G = (V, E) be a DAG, with nodes V and
edges E . We write N = |V| � 2 the number of nodes.
Without loss of generality, we number the nodes in topo-
logical order, from 1 (start) to N (end), and thus V = [N].
Node 1 is the only node without parents, and node N the
only node without children. Every directed edge (i, j) from
a parent node j to a child node i has a weight ✓i,j 2 R. We
gather the edge weights in a matrix ✓ 2 ⇥ ✓ RN⇥N , set-
ting ✓i,j = �1 if (i, j) /2 E and ✓1,1 = 1. We consider

Figure 1: DTW⌦(✓) is an instantiation of the proposed smoothed dynamic programming operator, DP⌦(✓),
to the dynamic time warping (DTW) computational graph. In this picture, ✓ is the squared Euclidean
distance matrix between the observations of two time-series. The gradient rDTW⌦(✓) is equal to the
expected alignment under a certain random walk characterized in §3.3 and is a sound continuous relaxation to
the hard DTW alignment between the two time-series (here depicted with a yellow path). Unlike negentropy
regularization (left), `22 regularization leads to exactly sparse alignments (right). Our framework allows to
backpropagate through both DTW⌦(✓) and rDTW⌦(✓), which makes it possible to learn the distance
matrix ✓ end-to-end.

of conditional random fields (CRFs) (La↵erty et al., 2001), which can be seen as changing the semiring
used by the dynamic program — replacing all values by their exponentials and all (max,+) operations with
(+,⇥) operations (Verdu & Poor, 1987). While this modification smoothes the dynamic program, it looses
the sparsity of solutions, since hard assignments become soft ones. Moreover, a general understanding of
how to relax and di↵erentiate dynamic programs is lacking. In this work, we propose to do so by leveraging
smoothing (Moreau, 1965; Nesterov, 2005) and backpropagation (Linnainmaa, 1970). We make the following
contributions.

1) We present a unified framework for turning a broad class of dynamic programs (DP) into di↵erentiable
operators. Unlike existing works, we propose to change the semiring to use (max⌦,+) operations, where
max⌦ is a max operator smoothed with a strongly convex regularizer ⌦ (§2).

2) We show that the resulting DP operators, that we call DP⌦, are smoothed relaxations of the original DP
algorithm and satisfy several key properties, chief among them convexity. In addition, we show that their
gradient, rDP⌦, is equal to the expected trajectory of a certain random walk and can be used as a sound
relaxation to the original dynamic program’s solution. Using negative entropy for ⌦ recovers existing CRF-
based works from a di↵erent perspective — we provide new arguments as to why this ⌦ is a good choice.
On the other hand, using squared `2 norm for ⌦ leads to new algorithms whose expected solution is sparse.
We derive a clean and e�cient method to backpropagate gradients, both through DP⌦ and rDP⌦. This
allows us to define di↵erentiable DP layers that can be incorporated in neural networks trained end-to-end
(§3).

3) We illustrate how to to derive two particular instantiations of our framework, a smoothed Viterbi algo-
rithm for sequence prediction and a smoothed DTW algorithm for supervised time-series alignment (§4).
The latter is illustrated in Figure 1. Finally, we showcase these two instantiations on structured prediction
tasks (§5) and on structured attention for neural machine translation (§6).

Notation. We denote scalars, vectors and matrices using lower-case, bold lower-case and bold upper-case
letters, e.g., y, y and Y . We denote the elements of Y by yi,j and its rows by yi. We denote the Frobenius
inner product between A and B by hA,Bi , P

i,j
ai,jbi,j . We denote the (D � 1)-probability simplex by

4
D , {� 2 RD

+ : k�k1 = 1}. We write conv(Y) , {
P

Y 2Y �Y Y : � 2 4
|Y|

} the convex hull of Y, [N] the

set {1, . . . , N} and supp(x) , {j 2 [D] : xj 6= 0} the support of x 2 RD. We denote the Shannon entropy
by H(q) , P

i
qi log qi.

We will release an optimized modular PyTorch implementation for reproduction and reuse.

Quadratic regularization 
(Mensch & Blondel, 2018)

Soft solution (expected alignment 𝔼p[Y])

Expected Alignment (Path)

MAP(θ) ≜ arg max
y∈𝒴⊆ℝm

⟨y, θ⟩

θ

MAP inference: Highest-scoring Structure

= arg max
y∈conv(𝒴)

⟨y, θ⟩

conv(𝒴)

Marginal polytope  
(Wainwright & Jordan, 2008)

MAP(θ) ≜ arg max
y∈𝒴⊆ℝm

⟨y, θ⟩

θ

MAP inference: Highest-scoring Structure

= arg max
y∈conv(𝒴)

⟨y, θ⟩

conv(𝒴)

Marginal polytope  
(Wainwright & Jordan, 2008)

MAP(θ) ≜ arg max
y∈𝒴⊆ℝm

⟨y, θ⟩

θ

MAP inference: Highest-scoring Structure

Can be computed efficiently by  
dynamic programming

in the case of DAGs (no cycle)

= arg max
y∈conv(𝒴)

⟨y, θ⟩

conv(𝒴)

Marginal polytope  
(Wainwright & Jordan, 2008)

MAP(θ) ≜ arg max
y∈𝒴⊆ℝm

⟨y, θ⟩

θ

MAP(θ) is a discontinuous function

MAP inference: Highest-scoring Structure

Can be computed efficiently by  
dynamic programming

in the case of DAGs (no cycle)

t + 1t − 1 t

… …

vt,i(θ) = max
j

vt−1,j(θ) + θt,i,j
Best value in  

state i up to time t

θt,1,1

θt,1,2

θt,1,3

vt,1(θ)vt−1,1(θ)

vt−1,2(θ)

vt−1,2(θ)

Forward pass

Bellman’s recursion

T − 1 T

…

1

1

1

Forward pass

END STATE

vT,1(θ)

vT,2(θ)

vT,3(θ)

DP value and optimality

DP(θ)≜

T − 1 T

…

1

1

1

Forward pass

END STATE

vT,1(θ)

vT,2(θ)

vT,3(θ)

DP value and optimality

DP(θ)≜

DP(θ) = max
y∈𝒴

⟨y, θ⟩ ∈ ℝOptimality:

t + 1t − 1 t

… …

bt,i(θ) = arg max
j

vt−1,j(θ) + θt,i,j ∈ [S]

vt,1(θ)

Forward pass

vt,2(θ)

vt,3(θ)

bt,1(θ)

bt,3(θ)

bt,2(θ)

Maintaining back pointers

t + 1t − 1 t

bt,3(θ)

Start from end state and follow back pointers

bt+1,1(θ)

MAP(θ) = arg max
y∈𝒴⊆ℝm

⟨y, θ⟩Optimal path equals

Backtracking

T1 T − 12

…

…

…
START

END

b2,3(θ) bT,1(θ)

marginal(θ) ≜ 𝔼p[Y]

θ

p = softmax ((⟨y, θ⟩)y∈𝒴) ∈ △|𝒴|

Gibbs distribution

Marginal inference: Expected Structure

Marginal polytope  
(Wainwright & Jordan, 2008)

marginal(θ)

conv(𝒴)

marginal(θ) ≜ 𝔼p[Y]

θ

Differentiable but completely dense  
(always in the interior of the polytope)

p = softmax ((⟨y, θ⟩)y∈𝒴) ∈ △|𝒴|

Gibbs distribution

Marginal inference: Expected Structure

Marginal polytope  
(Wainwright & Jordan, 2008)

marginal(θ)

conv(𝒴)

marginal(θ) ≜ 𝔼p[Y]

θ

Differentiable but completely dense  
(always in the interior of the polytope)

p = softmax ((⟨y, θ⟩)y∈𝒴) ∈ △|𝒴|

Gibbs distribution

Marginal inference: Expected Structure

Marginal polytope  
(Wainwright & Jordan, 2008)

Computation: change semiring

x → ex (max , +) → (+ , ×)marginal(θ)

conv(𝒴)

marginal(θ) ≜ 𝔼p[Y]

θ

Differentiable but completely dense  
(always in the interior of the polytope)

p = softmax ((⟨y, θ⟩)y∈𝒴) ∈ △|𝒴|

Gibbs distribution

Marginal inference: Expected Structure

Marginal polytope  
(Wainwright & Jordan, 2008)

Viterbi → Forward-Backward  
CKY → Inside-Outside
DTW → Soft-DTW 
max-sum → sum-product (BP)

Computation: change semiring

x → ex (max , +) → (+ , ×)marginal(θ)

conv(𝒴)

marginalΩ(θ) ≜ 𝔼p[Y]

θ

p = argmaxΩ ((⟨y, θ⟩)y∈𝒴) ∈ △|𝒴|

Sparse marginal inference?

marginalΩ(θ)

conv(𝒴)

marginalΩ(θ) ≜ 𝔼p[Y]

θ

p = argmaxΩ ((⟨y, θ⟩)y∈𝒴) ∈ △|𝒴|

Can we use ?Ω(p) =
1
2

∥p∥2

Sparse marginal inference?

marginalΩ(θ)

conv(𝒴)

marginalΩ(θ) ≜ 𝔼p[Y]

θ No longer a semiring change
in general

p = argmaxΩ ((⟨y, θ⟩)y∈𝒴) ∈ △|𝒴|

Can we use ?Ω(p) =
1
2

∥p∥2

Sparse marginal inference?

marginalΩ(θ)

conv(𝒴)

marginalΩ(θ) ≜ 𝔼p[Y]

θ No longer a semiring change
in general

p = argmaxΩ ((⟨y, θ⟩)y∈𝒴) ∈ △|𝒴|

Can we use ?Ω(p) =
1
2

∥p∥2

Sparse marginal inference?

Difficult to compute exactly

marginalΩ(θ)

conv(𝒴)

Our proposal for differentiable DP

Mensch & Blondel, ICML 2018

•Based on the novel viewpoint of smoothed max operators

Our proposal for differentiable DP

Mensch & Blondel, ICML 2018

•Based on the novel viewpoint of smoothed max operators

•Works for any shortest path problem over a DAG

Our proposal for differentiable DP

Mensch & Blondel, ICML 2018

•Based on the novel viewpoint of smoothed max operators

•Works for any shortest path problem over a DAG

•Enjoys same big-O complexity as regular DP

Our proposal for differentiable DP

Mensch & Blondel, ICML 2018

•Based on the novel viewpoint of smoothed max operators

•Works for any shortest path problem over a DAG

•Enjoys same big-O complexity as regular DP

•Sparse solutions when using quadratic regularization

Our proposal for differentiable DP

Mensch & Blondel, ICML 2018

•Based on the novel viewpoint of smoothed max operators

•Works for any shortest path problem over a DAG

•Enjoys same big-O complexity as regular DP

•Sparse solutions when using quadratic regularization

•Probabilistic interpretation

Our proposal for differentiable DP

Mensch & Blondel, ICML 2018

•Based on the novel viewpoint of smoothed max operators

•Works for any shortest path problem over a DAG

•Enjoys same big-O complexity as regular DP

•Sparse solutions when using quadratic regularization

•Probabilistic interpretation

•Unified and numerically stable implementation  
(computations directly in log-domain!)

Our proposal for differentiable DP

Mensch & Blondel, ICML 2018

Smoothed max operatorsSmoothed max operators

Smoothed max operators

argmaxΩ(θ) ≜ arg max
p∈△m

⟨p, θ⟩−Ω(p) ∈ △m

Recall the definition of differentiable argmax operator

Smoothed max operators

Smoothed max operators

argmaxΩ(θ) ≜ arg max
p∈△m

⟨p, θ⟩−Ω(p) ∈ △m

Recall the definition of differentiable argmax operator

maxΩ(θ) ≜ max
p∈△m

⟨p, θ⟩ −Ω(p) ∈ ℝ

Similarly we define the smoothed max operator (Nesterov, 2005)

Smoothed max operators

Smoothed max operators

argmaxΩ(θ) ≜ arg max
p∈△m

⟨p, θ⟩−Ω(p) ∈ △m

Recall the definition of differentiable argmax operator

maxΩ(θ) ≜ max
p∈△m

⟨p, θ⟩ −Ω(p) ∈ ℝ

Similarly we define the smoothed max operator (Nesterov, 2005)

Strongly convex Ω over Δ Smooth maxΩ ⇔
From the duality between smoothness and strong convexity

Smoothed max operators

maxΩ(θ) ≜ max
p∈△m

⟨p, θ⟩ − Ω(p)

maxΩ([t,0])

t

Ω(p) = 0

Unregularized

−Ω([π,1 − π])

π0 1

Regularization Smoothed max

Examples

maxΩ(θ) ≜ max
p∈△m

⟨p, θ⟩ − Ω(p)

maxΩ([t,0])

t

Ω(p) = 0

Unregularized

−Ω([π,1 − π])

π0 1

Ω(p) = ∑
i

pi log pi

Shannon (negative) entropy

Regularization Smoothed max

Examples

maxΩ(θ) ≜ max
p∈△m

⟨p, θ⟩ − Ω(p)

maxΩ([t,0])

t

Ω(p) = 0

Unregularized

−Ω([π,1 − π])

π0 1

Ω(p) = ∑
i

pi log pi

Shannon (negative) entropy

Regularization Smoothed max

Examples

Gini (negative) index

Ω(p) =
1
2

(∥p∥2 − 1)

Exactly 0

t + 1t − 1 t

… …

vt,i(θ) = maxΩ((vt−1,j(θ) + θt,i,j)j∈[S])

θt,1,1

θt,1,2

θt,1,3

vt,1(θ)vt−1,1(θ)

vt−1,2(θ)

vt−1,2(θ)

Forward pass

(maxΩ, +)

Smoothed Bellman’s recursion
(max, +)

T − 1 T

…

1

1

1

Forward pass

END STATE

vT,1(θ)

vT,2(θ)

vT,3(θ)

Smoothed DP value

DPΩ(θ)≜

T − 1 T

…

1

1

1

Forward pass

END STATE

vT,1(θ)

vT,2(θ)

vT,3(θ)

Smoothed DP value

DPΩ(θ)≜

DPΩ(θ) ≤ maxΩ((⟨y, θ⟩)y∈𝒴)

t + 1t − 1 t

… …

qt,i(θ) = argmaxΩ((vt−1,j(θ) + θt,i,j)j∈[S]) ∈ △SReplace  
back pointers

with distribution  
over states

vt,1(θ)

Forward pass

vt,2(θ)

vt,3(θ)

qt,1(θ)

qt,2(θ)

qt,3(θ)

Probabilistic backpointers

T1

Random walk (finite Markov chain) defines  
a distribution p over paths

Each time step t has its own transition matrix Qt ∈ ℝS×S

Random walk

T − 12

…

…

…

START END

T1

Random walk (finite Markov chain) defines  
a distribution p over paths

Each time step t has its own transition matrix Qt ∈ ℝS×S

Random walk

T − 12

…

…

…

START END

Sampling is easy.

How to compute expectation ? 𝔼p[Y]

Proposition (Mensch & Blondel, 2018)

∇DPΩ(θ) = 𝔼p[Y] ∈ conv(𝒴)

Gradient = Expected path

(See also Eisner, 2016)

Proposition (Mensch & Blondel, 2018)

∇DPΩ(θ) = 𝔼p[Y] ∈ conv(𝒴)

Can compute 𝔼p[Y] at the same cost as computing DPΩ(θ) by backpropagation

Gradient = Expected path

(See also Eisner, 2016)

Proposition (Mensch & Blondel, 2018)

∇DPΩ(θ) = 𝔼p[Y] ∈ conv(𝒴)

Can compute 𝔼p[Y] at the same cost as computing DPΩ(θ) by backpropagation

Gradient = Expected path

∇DPΩ(θ) = 𝔼p[Y] =
∑y∈𝒴 exp⟨y, θ⟩y

Z(θ)

For Ω = negative entropy, we have
Intractable sum  

if computed naively

(See also Eisner, 2016)

t + 1t − 1 t

…

Backpropagation

E ≜ 𝔼p[Y] et,⋅,j = qt+1,⋅,j ∘ (e⊤
t+1,⋅,j1)

et,⋅,1 et,⋅,1

et,⋅,2

et,⋅,3

Backpropagation

…

t + 1t − 1 t

…

Backpropagation

E ≜ 𝔼p[Y] et,⋅,j = qt+1,⋅,j ∘ (e⊤
t+1,⋅,j1)

et,⋅,1 et,⋅,1

et,⋅,2

et,⋅,3

Backpropagation

…

Up to 12x faster in our experiments  
compared to PyTorch’s autodiff

Theoretical results

1. DPΩ(θ) is convex

Proof uses that x ≤ y ⇒ maxΩ(x) ≤ maxΩ(y)

Theoretical results

1. DPΩ(θ) is convex

Proof uses that x ≤ y ⇒ maxΩ(x) ≤ maxΩ(y)

Theoretical results

2. Approximation error

(N-1) L ≤ DPΩ(θ) - DP(θ) ≤ (N-1) U

N: #nodes in DAG

L, U: constants that depend on Ω

1. DPΩ(θ) is convex

Proof uses that x ≤ y ⇒ maxΩ(x) ≤ maxΩ(y)

Theoretical results

3.

Proof reduces to showing that max-H is the only maxΩ supporting
associativity, i.e., max-H(x, max-H(y, z)) = max-H(max-H(x, y), z)

DPΩ(θ) = maxΩ((⟨y, θ⟩)y∈𝒴) ⇔ Ω = -H (Shannon’s negentropy)

2. Approximation error

(N-1) L ≤ DPΩ(θ) - DP(θ) ≤ (N-1) U

N: #nodes in DAG

L, U: constants that depend on Ω

Structured prediction losses

Structured prediction losses

max
y∈𝒴

⟨θ, y⟩ − ⟨θ, ytrue⟩
Structured perceptron loss (Collins, 2002)

Training time

Structured prediction losses

= DP(θ) − ⟨θ, ytrue⟩max
y∈𝒴

⟨θ, y⟩ − ⟨θ, ytrue⟩
Structured perceptron loss (Collins, 2002)

Training time

Structured prediction losses

= DP(θ) − ⟨θ, ytrue⟩

Smoothed loss (proposed)

DPΩ(θ) − ⟨θ, ytrue⟩

max
y∈𝒴

⟨θ, y⟩ − ⟨θ, ytrue⟩
Structured perceptron loss (Collins, 2002)

Training time

Structured prediction losses

= DP(θ) − ⟨θ, ytrue⟩

Smoothed loss (proposed)

DPΩ(θ) − ⟨θ, ytrue⟩

max
y∈𝒴

⟨θ, y⟩ − ⟨θ, ytrue⟩
Structured perceptron loss (Collins, 2002)

Training time

Entropic regularization → CRF loss

Quadratic regularization → new loss

Structured prediction losses

= DP(θ) − ⟨θ, ytrue⟩

Smoothed loss (proposed)

DPΩ(θ) − ⟨θ, ytrue⟩

max
y∈𝒴

⟨θ, y⟩ − ⟨θ, ytrue⟩
Structured perceptron loss (Collins, 2002)

Training time

Test time

arg max
y∈𝒴⊆ℝm

⟨y, θ⟩
MAP solution

Entropic regularization → CRF loss

Quadratic regularization → new loss

Structured prediction losses

= DP(θ) − ⟨θ, ytrue⟩

Smoothed loss (proposed)

DPΩ(θ) − ⟨θ, ytrue⟩

max
y∈𝒴

⟨θ, y⟩ − ⟨θ, ytrue⟩
Structured perceptron loss (Collins, 2002)

Training time

Test time

arg max
y∈𝒴⊆ℝm

⟨y, θ⟩
MAP solution Expected solution

∇DPΩ(θ) = 𝔼p[Y]

Entropic regularization → CRF loss

Quadratic regularization → new loss

Structured prediction losses

= DP(θ) − ⟨θ, ytrue⟩

Smoothed loss (proposed)

DPΩ(θ) − ⟨θ, ytrue⟩

max
y∈𝒴

⟨θ, y⟩ − ⟨θ, ytrue⟩
Structured perceptron loss (Collins, 2002)

Training time

Test time

arg max
y∈𝒴⊆ℝm

⟨y, θ⟩
MAP solution Expected solution

∇DPΩ(θ) = 𝔼p[Y]

Ranking

Sort by probability 
(sparse case)

Entropic regularization → CRF loss

Quadratic regularization → new loss

Apple CEO Tim Cook introduces new iphone in Cupertino.

Tags: {Location, Organization, Person, Misc} x {Singleton, Begin, Inside, End}

S-ORG B-PER E-PER S-LOCO O O O O

NER experiments

Apple CEO Tim Cook introduces new iphone in Cupertino.

Tags: {Location, Organization, Person, Misc} x {Singleton, Begin, Inside, End}

S-ORG B-PER E-PER S-LOCO O O O O

NER experiments
Di↵erentiable Dynamic Programming for Structured Prediction and Attention 25

” I
th

in
k

hi
s

vi
ew

s on (
U
.S

.
Tr

ea
su

ry
Se

cr
et

ar
y

R
ob

er
t)

R
ub

in ’s
co

m
m

en
ts

w
er

e
in
de

ed
w
ha

t he
hi
m

se
lf

th
in
ks

ab
ou

t
th

e
do

lla
r , ”

sa
id

H
an

k
N
ot

e ,
ch

ie
f

de
al
er at

Su
m

ito
m

o
B
an

k .

S-LOC
B-LOC
I-LOC
E-LOC
S-ORG
B-ORG
I-ORG
E-ORG
S-PER
B-PER
I-PER
E-PER

S-MISC
B-MISC
I-MISC
E-MISC

O

L2 regularization

Figure 6: Test predictions from the entropy and `
2
2 regularized named entity recognition (NER) models.

Red dots indicate ground truth. When using `
2
2 regularization, model predictions are sparse (grey borders

indicates non-zero cells). They are thus easier to introspect for ambiguities, as we can list a finite number
of possible outputs.

C.1 Named entity recognition (section §5.2)

Our model extracts word embedding from a 300-dimensional lookup table concatenated with a 50-dimensional
character embedding. This character embedding corresponds to the concatenation of the last hidden unit
of a bi-directional character LSTM, as in Lample et al. (2016). Character embedding size is set to 50. A
word LSTM then produces sentence-aware features for each word. This LSTM is bi-directional with 100-
dimensional hidden units per direction. The final features X used to build the potential tensor ✓ are thus
200-dimensional. Note that, in contrast with Lample et al. (2016):

• The look-up table is initialized with 300-dimensional embeddings from FastText (Joulin et al., 2016),
trained on Wikipedia corpus.

• We do not pad letters prior to feeding the character LSTM as it is not principled.
• We do not train the unknown word embedding as we found it had no e↵ect.

We convert tags to the IOBES (Inside-Outside-Begin-End-Stop) scheme to build a richer Vit⌦ model than
if we used the simpler IOB (Inside-Outside-Begin) scheme, that has a lower number of tags. We performed
a small grid-search to select the step-size and batch-size used for optimization: s 2 {0.005, 0.01, 0.02},
b 2 {8, 32, 128}. For each language and each loss, we select the highest-scoring model on the validation set,
and report the test score.

The model is strongly subject to overfitting using the convex surrogate loss and the log likelihood. We have
to use a small batch size (b = 8) and vanilla SGD with large step size (s = 0.01) to avoid this overfitting
issue. For all losses, accelerated stochastic optimizers have all lower generalization performance than SGD,
as also noticed in (Lample et al., 2016) when using the classical negative log-likelihood as a loss.

Di↵erentiable Dynamic Programming for Structured Prediction and Attention 25

S-LOC
B-LOC
I-LOC
E-LOC
S-ORG
B-ORG
I-ORG
E-ORG
S-PER
B-PER
I-PER
E-PER

S-MISC
B-MISC
I-MISC
E-MISC

O

Entropy regularization

Figure 6: Test predictions from the entropy and `
2
2 regularized named entity recognition (NER) models.

Red dots indicate ground truth. When using `
2
2 regularization, model predictions are sparse (grey borders

indicates non-zero cells). They are thus easier to introspect for ambiguities, as we can list a finite number
of possible outputs.

C.1 Named entity recognition (section §5.2)

Our model extracts word embedding from a 300-dimensional lookup table concatenated with a 50-dimensional
character embedding. This character embedding corresponds to the concatenation of the last hidden unit
of a bi-directional character LSTM, as in Lample et al. (2016). Character embedding size is set to 50. A
word LSTM then produces sentence-aware features for each word. This LSTM is bi-directional with 100-
dimensional hidden units per direction. The final features X used to build the potential tensor ✓ are thus
200-dimensional. Note that, in contrast with Lample et al. (2016):

• The look-up table is initialized with 300-dimensional embeddings from FastText (Joulin et al., 2016),
trained on Wikipedia corpus.

• We do not pad letters prior to feeding the character LSTM as it is not principled.
• We do not train the unknown word embedding as we found it had no e↵ect.

We convert tags to the IOBES (Inside-Outside-Begin-End-Stop) scheme to build a richer Vit⌦ model than
if we used the simpler IOB (Inside-Outside-Begin) scheme, that has a lower number of tags. We performed
a small grid-search to select the step-size and batch-size used for optimization: s 2 {0.005, 0.01, 0.02},
b 2 {8, 32, 128}. For each language and each loss, we select the highest-scoring model on the validation set,
and report the test score.

The model is strongly subject to overfitting using the convex surrogate loss and the log likelihood. We have
to use a small batch size (b = 8) and vanilla SGD with large step size (s = 0.01) to avoid this overfitting
issue. For all losses, accelerated stochastic optimizers have all lower generalization performance than SGD,
as also noticed in (Lample et al., 2016) when using the classical negative log-likelihood as a loss.

Di↵erentiable Dynamic Programming for Structured Prediction and Attention 25

” I
th

in
k

hi
s

vi
ew

s on (
U
.S

.
Tr

ea
su

ry
Se

cr
et

ar
y

R
ob

er
t)

R
ub

in ’s
co

m
m

en
ts

w
er

e
in
de

ed
w
ha

t he
hi
m

se
lf

th
in
ks

ab
ou

t
th

e
do

lla
r , ”

sa
id

H
an

k
N
ot

e ,
ch

ie
f

de
al
er at

Su
m

ito
m

o
B
an

k .

Figure 6: Test predictions from the entropy and `
2
2 regularized named entity recognition (NER) models.

Red dots indicate ground truth. When using `
2
2 regularization, model predictions are sparse (grey borders

indicates non-zero cells). They are thus easier to introspect for ambiguities, as we can list a finite number
of possible outputs.

C.1 Named entity recognition (section §5.2)

Our model extracts word embedding from a 300-dimensional lookup table concatenated with a 50-dimensional
character embedding. This character embedding corresponds to the concatenation of the last hidden unit
of a bi-directional character LSTM, as in Lample et al. (2016). Character embedding size is set to 50. A
word LSTM then produces sentence-aware features for each word. This LSTM is bi-directional with 100-
dimensional hidden units per direction. The final features X used to build the potential tensor ✓ are thus
200-dimensional. Note that, in contrast with Lample et al. (2016):

• The look-up table is initialized with 300-dimensional embeddings from FastText (Joulin et al., 2016),
trained on Wikipedia corpus.

• We do not pad letters prior to feeding the character LSTM as it is not principled.
• We do not train the unknown word embedding as we found it had no e↵ect.

We convert tags to the IOBES (Inside-Outside-Begin-End-Stop) scheme to build a richer Vit⌦ model than
if we used the simpler IOB (Inside-Outside-Begin) scheme, that has a lower number of tags. We performed
a small grid-search to select the step-size and batch-size used for optimization: s 2 {0.005, 0.01, 0.02},
b 2 {8, 32, 128}. For each language and each loss, we select the highest-scoring model on the validation set,
and report the test score.

The model is strongly subject to overfitting using the convex surrogate loss and the log likelihood. We have
to use a small batch size (b = 8) and vanilla SGD with large step size (s = 0.01) to avoid this overfitting
issue. For all losses, accelerated stochastic optimizers have all lower generalization performance than SGD,
as also noticed in (Lample et al., 2016) when using the classical negative log-likelihood as a loss.

Examples of predicted soft assignments at test time

(CRF)

English Spanish German Dutch

CRF loss 
(Entropy) 90.80 86.68 77.35 87.56

Squared 
norm 90.86 85.51 76.01 86.58

Lample et al
2016 

(CRF loss)
90.96 85.75 78.76 81.74

NER experiments

F1 score comparison on CoNLL03 NER datasets

English Spanish German Dutch

CRF loss 
(Entropy) 90.80 86.68 77.35 87.56

Squared 
norm 90.86 85.51 76.01 86.58

Lample et al
2016 

(CRF loss)
90.96 85.75 78.76 81.74

NER experiments

. Competitive results with other losses 

. Fast convergence at train time thanks to smoothness  

. Sparse probabilistic model available at test time!

F1 score comparison on CoNLL03 NER datasets

Summary of second part

T1 T − 12

…
…

…
S E

Smoothing induces a random walk

a distribution over paths in the DAG

Gradient = Expected path

∇DPΩ(θ) = 𝔼p[Y]

Entropic regularization = CRF

computed efficiently by backprop

Di↵erentiable Dynamic Programming for Structured Prediction and Attention 25

” I
th

in
k

hi
s

vi
ew

s on (
U
.S

.
Tr

ea
su

ry
Se

cr
et

ar
y

R
ob

er
t)

R
ub

in ’s
co

m
m

en
ts

w
er

e
in
de

ed
w
ha

t he
hi
m

se
lf

th
in
ks

ab
ou

t
th

e
do

lla
r , ”

sa
id

H
an

k
N
ot

e ,
ch

ie
f

de
al
er at

Su
m

ito
m

o
B
an

k .

S-LOC
B-LOC
I-LOC
E-LOC
S-ORG
B-ORG
I-ORG
E-ORG
S-PER
B-PER
I-PER
E-PER

S-MISC
B-MISC
I-MISC
E-MISC

O

L2 regularization

Figure 6: Test predictions from the entropy and `
2
2 regularized named entity recognition (NER) models.

Red dots indicate ground truth. When using `
2
2 regularization, model predictions are sparse (grey borders

indicates non-zero cells). They are thus easier to introspect for ambiguities, as we can list a finite number
of possible outputs.

C.1 Named entity recognition (section §5.2)

Our model extracts word embedding from a 300-dimensional lookup table concatenated with a 50-dimensional
character embedding. This character embedding corresponds to the concatenation of the last hidden unit
of a bi-directional character LSTM, as in Lample et al. (2016). Character embedding size is set to 50. A
word LSTM then produces sentence-aware features for each word. This LSTM is bi-directional with 100-
dimensional hidden units per direction. The final features X used to build the potential tensor ✓ are thus
200-dimensional. Note that, in contrast with Lample et al. (2016):

• The look-up table is initialized with 300-dimensional embeddings from FastText (Joulin et al., 2016),
trained on Wikipedia corpus.

• We do not pad letters prior to feeding the character LSTM as it is not principled.
• We do not train the unknown word embedding as we found it had no e↵ect.

We convert tags to the IOBES (Inside-Outside-Begin-End-Stop) scheme to build a richer Vit⌦ model than
if we used the simpler IOB (Inside-Outside-Begin) scheme, that has a lower number of tags. We performed
a small grid-search to select the step-size and batch-size used for optimization: s 2 {0.005, 0.01, 0.02},
b 2 {8, 32, 128}. For each language and each loss, we select the highest-scoring model on the validation set,
and report the test score.

The model is strongly subject to overfitting using the convex surrogate loss and the log likelihood. We have
to use a small batch size (b = 8) and vanilla SGD with large step size (s = 0.01) to avoid this overfitting
issue. For all losses, accelerated stochastic optimizers have all lower generalization performance than SGD,
as also noticed in (Lample et al., 2016) when using the classical negative log-likelihood as a loss.

Di↵erentiable Dynamic Programming for Structured Prediction and Attention 25

S-LOC
B-LOC
I-LOC
E-LOC
S-ORG
B-ORG
I-ORG
E-ORG
S-PER
B-PER
I-PER
E-PER

S-MISC
B-MISC
I-MISC
E-MISC

O

Entropy regularization

Figure 6: Test predictions from the entropy and `
2
2 regularized named entity recognition (NER) models.

Red dots indicate ground truth. When using `
2
2 regularization, model predictions are sparse (grey borders

indicates non-zero cells). They are thus easier to introspect for ambiguities, as we can list a finite number
of possible outputs.

C.1 Named entity recognition (section §5.2)

Our model extracts word embedding from a 300-dimensional lookup table concatenated with a 50-dimensional
character embedding. This character embedding corresponds to the concatenation of the last hidden unit
of a bi-directional character LSTM, as in Lample et al. (2016). Character embedding size is set to 50. A
word LSTM then produces sentence-aware features for each word. This LSTM is bi-directional with 100-
dimensional hidden units per direction. The final features X used to build the potential tensor ✓ are thus
200-dimensional. Note that, in contrast with Lample et al. (2016):

• The look-up table is initialized with 300-dimensional embeddings from FastText (Joulin et al., 2016),
trained on Wikipedia corpus.

• We do not pad letters prior to feeding the character LSTM as it is not principled.
• We do not train the unknown word embedding as we found it had no e↵ect.

We convert tags to the IOBES (Inside-Outside-Begin-End-Stop) scheme to build a richer Vit⌦ model than
if we used the simpler IOB (Inside-Outside-Begin) scheme, that has a lower number of tags. We performed
a small grid-search to select the step-size and batch-size used for optimization: s 2 {0.005, 0.01, 0.02},
b 2 {8, 32, 128}. For each language and each loss, we select the highest-scoring model on the validation set,
and report the test score.

The model is strongly subject to overfitting using the convex surrogate loss and the log likelihood. We have
to use a small batch size (b = 8) and vanilla SGD with large step size (s = 0.01) to avoid this overfitting
issue. For all losses, accelerated stochastic optimizers have all lower generalization performance than SGD,
as also noticed in (Lample et al., 2016) when using the classical negative log-likelihood as a loss.

Di↵erentiable Dynamic Programming for Structured Prediction and Attention 25

” I
th

in
k

hi
s

vi
ew

s on (
U
.S

.
Tr

ea
su

ry
Se

cr
et

ar
y

R
ob

er
t)

R
ub

in ’s
co

m
m

en
ts

w
er

e
in
de

ed
w
ha

t he
hi
m

se
lf

th
in
ks

ab
ou

t
th

e
do

lla
r , ”

sa
id

H
an

k
N
ot

e ,
ch

ie
f

de
al
er at

Su
m

ito
m

o
B
an

k .

Figure 6: Test predictions from the entropy and `
2
2 regularized named entity recognition (NER) models.

Red dots indicate ground truth. When using `
2
2 regularization, model predictions are sparse (grey borders

indicates non-zero cells). They are thus easier to introspect for ambiguities, as we can list a finite number
of possible outputs.

C.1 Named entity recognition (section §5.2)

Our model extracts word embedding from a 300-dimensional lookup table concatenated with a 50-dimensional
character embedding. This character embedding corresponds to the concatenation of the last hidden unit
of a bi-directional character LSTM, as in Lample et al. (2016). Character embedding size is set to 50. A
word LSTM then produces sentence-aware features for each word. This LSTM is bi-directional with 100-
dimensional hidden units per direction. The final features X used to build the potential tensor ✓ are thus
200-dimensional. Note that, in contrast with Lample et al. (2016):

• The look-up table is initialized with 300-dimensional embeddings from FastText (Joulin et al., 2016),
trained on Wikipedia corpus.

• We do not pad letters prior to feeding the character LSTM as it is not principled.
• We do not train the unknown word embedding as we found it had no e↵ect.

We convert tags to the IOBES (Inside-Outside-Begin-End-Stop) scheme to build a richer Vit⌦ model than
if we used the simpler IOB (Inside-Outside-Begin) scheme, that has a lower number of tags. We performed
a small grid-search to select the step-size and batch-size used for optimization: s 2 {0.005, 0.01, 0.02},
b 2 {8, 32, 128}. For each language and each loss, we select the highest-scoring model on the validation set,
and report the test score.

The model is strongly subject to overfitting using the convex surrogate loss and the log likelihood. We have
to use a small batch size (b = 8) and vanilla SGD with large step size (s = 0.01) to avoid this overfitting
issue. For all losses, accelerated stochastic optimizers have all lower generalization performance than SGD,
as also noticed in (Lample et al., 2016) when using the classical negative log-likelihood as a loss.

L2 regularization = new sparse model

Conclusion

Conclusion

•The log-sum-exp and softmax are ubiquitous in deep learning

Conclusion

•The log-sum-exp and softmax are ubiquitous in deep learning

•maxΩ and argmaxΩ operators provide drop-in replacement for
them with sparse and/or structured outputs 

Conclusion

•The log-sum-exp and softmax are ubiquitous in deep learning

•maxΩ and argmaxΩ operators provide drop-in replacement for
them with sparse and/or structured outputs 

•Induce a probabilistic perspective 

Conclusion

•The log-sum-exp and softmax are ubiquitous in deep learning

•maxΩ and argmaxΩ operators provide drop-in replacement for
them with sparse and/or structured outputs 

•Induce a probabilistic perspective 

•Many more potential applications to explore

