
Convex Factorization Machines

Mathieu Blondel, Akinori Fujino, and Naonori Ueda

NTT Communication Science Laboratories, Kyoto, Japan

Abstract. Factorization machines are a generic framework which al-
lows to mimic many factorization models simply by feature engineering.
In this way, they combine the high predictive accuracy of factorization
models with the flexibility of feature engineering. Unfortunately, fac-
torization machines involve a non-convex optimization problem and are
thus subject to bad local minima. In this paper, we propose a convex
formulation of factorization machines based on the nuclear norm. Our
formulation imposes fewer restrictions on the learned model and is thus
more general than the original formulation. To solve the corresponding
optimization problem, we present an efficient globally-convergent two-
block coordinate descent algorithm. Empirically, we demonstrate that
our approach achieves comparable or better predictive accuracy than the
original factorization machines on 4 recommendation tasks and scales to
datasets with 10 million samples.

Keywords: factorization machines, feature interactions, recommender
systems, nuclear norm

1 Introduction

Factorization machines [12] [13] are a generic framework which allows to mimic
many factorization models simply by feature engineering. Similarly to linear
models, factorization machines learn a feature weight vector w ∈ Rd, where d
is the number of features. However, factorization machines also learn a pairwise
feature interaction weight matrix Z ∈ Rd×d. Given a feature vector x ∈ Rd,
factorization machines use w and Z to predict a target y ∈ R. The main advan-
tage of factorization machines is that they learn the feature interaction weight
matrix in factorized form, Z = V V T, where V ∈ Rd×k and k � d is a rank
hyper-parameter. This reduces overfitting, since the number of parameters to
estimate is reduced from d2 to kd, and allows to compute predictions efficiently.
Although they can be used for any supervised learning task such as classifica-
tion and regression, factorization machines are especially useful for recommender
systems. As shown in [12][13], factorization machines can mimic many existing
factorization models just by choosing an appropriate feature representation for
x. Examples include standard matrix factorization, SVD++ [8], timeSVD++[9]
and PITF (pairwise interaction tensor factorization) [16]. Moreover, it is easy to
incorporate auxiliary features such as user and item attributes, contextual infor-
mation [15] and cross-domain feedback [10]. In [14], it was shown that factoriza-
tion machines achieve predictive accuracy as good as the best specialized models

2 Convex Factorization Machines

on the Netflix and KDDcup 2012 challenges. In short, factorization machines are
a generic framework which combines the high predictive accuracy of factorization
models with the flexibility of feature engineering. Unfortunately, factorization
machines have two main drawbacks. First, they involve a non-convex optimiza-
tion problem. Thus, we can typically only obtain a local solution, the quality
of which depends on initialization. Second, factorization machines require the
choice of a rank hyper-parameter. In practice, predictive accuracy can be quite
sensitive to this choice.

In this paper, we propose a convex formulation of factorization machines
based on the nuclear norm. Our formulation is more general than the original one
in the sense that it imposes fewer restrictions on the feature interaction weight
matrix Z. For example, in our formulation, imposing positive semi-definiteness is
possible but not necessary. In addition, our formulation does not require choos-
ing any rank hyper-parameter and thus have one less hyper-parameter than the
original formulation. For solving the corresponding optimization problem, we
propose a globally-convergent two-block coordinate descent algorithm. Our algo-
rithm alternates between estimating the feature weight vector w and a low-rank
feature interaction weight matrix Z. Estimating w is easy, since the problem re-
duces to a simple linear model objective. However, estimating Z is challenging,
due to the quadratic number of feature interactions. Following a recent line of
work [17] [4] [7], we derive a greedy coordinate descent algorithm which breaks
down the large problem into smaller sub-problems. By exploiting structure, we
can solve these sub-problems efficiently. Furthermore, our algorithm maintains
an eigendecomposition of Z. Therefore, the entire matrix Z is never material-
ized and our algorithm can scale to very high-dimensional data. Empirically, we
demonstrate that our approach achieves comparable or better predictive accu-
racy than the original non-convex factorization machines on 4 recommendation
tasks and scales to datasets with 10 million samples.

Notation. For arbitrary real matrices, the inner product is defined as 〈A,B〉 :=
Tr(ATB) and the squared Frobenius matrix norm as ‖A‖2F := 〈A,A〉. We de-
note the element-wise product between two vectors a ∈ Rd and b ∈ Rd by
a ◦ b := [a1b1, . . . , adbd]

T. We denote the Kronecker product between two matri-
cesA ∈ Rm×n andB ∈ Rp×q byA⊗B ∈ Rmp×nq. We denote the set of symmet-
ric d× d matrices by Sd×d. Given A ∈ Rm×n, vec(A) ∈ Rmn denotes the vector
obtained by stacking the columns of A. By [n], we denote the set {1, . . . , n}.
The support of a vector λ ∈ Rd is defined as supp(λ) := {j ∈ [d] : λj 6= 0}.

2 Factorization machines

Factorization machines [12][13] predict the output associated with an input x =
[x1, . . . , xd]

T ∈ Rd using the following simple equation:

ỹ(x|w,V) := wTx+

d∑
j=1

d∑
j′=j+1

(V V T)jj′xjxj′ (1)

Convex Factorization Machines 3

wherew ∈ Rd, V ∈ Rd×k and k � d is a hyper-parameter which defines the rank
of the factorization. The vector w contains the weights of individual features for
predicting y, while the positive semi-definite matrix Z = V V T ∈ Sd×d contains
the weights of pairwise feature interactions. Because factorization machines learn
Z in factorized form, the number of parameters to estimate is reduced from d2 to
kd. In addition to helping reduce overfitting, this factorization allows to compute
predictions efficiently by using

ỹ(x|w,V) = wTx+
1

2

(
‖V Tx‖2 −

k∑
s=1

‖vs ◦ x‖2
)
,

where vs ∈ Rd is the sth column of V . Thus, computing predictions costs O(kd),
instead of O(d2) when implemented naively. For sparse x, the prediction cost
reduces to O(kNz(x)), where Nz(x) is the number of non-zero features in x.

Although they can be used for any supervised learning task such as classifica-
tion and regression, factorization machines are especially useful for recommender
systems. As shown in [12][13], factorization machines can mimic many existing
factorization models just by choosing an appropriate feature representation for
x. For example, consider a record (u, i, y), where u ∈ U is a user index, i ∈ I is
an item index and y ∈ R is a rating given by u to i. Then factorization machines
are exactly equivalent to matrix factorization (c.f., Section A in the supplemen-
tary material) simply by converting (u, i, y) to (x, y), where x ∈ Rd is expressed
in the following binary indicator representation with d = |U |+ |I|

x := [0, . . . , 0,

u︷︸︸︷
1 , 0, . . . , 0︸ ︷︷ ︸
|U |

, 0, . . . , 0,

|U |+i︷︸︸︷
1 , 0, . . . , 0︸ ︷︷ ︸
|I|

]T. (2)

Using more elaborated feature representations [12] [13], it is possible to mimic
many other factorization models, including SVD++ [8], timeSVD++[9] and
PITF (pairwise interaction tensor factorization) [16]. Moreover, it is easy to
incorporate auxiliary features such as user and item attributes, contextual in-
formation [15] and cross-domain feedback [10]. The ability to quickly try many
different features (“feature engineering”) is very flexible from a practitioner per-
spective. In addition, since factorization machines behave much like classifiers or
regressors, they are easy to integrate in a consistent manner to a machine learn-
ing library (see [3] for a discussion on the merits of library design consistency).

Given a training set consisting of n feature vectorsX = [x1, . . . ,xn]T ∈ Rn×d
and corresponding targets [y1, . . . , yn]T ∈ Rn, we can estimate w ∈ Rd and
V ∈ Rd×k using the principle of empirical risk minimization. For example, we
can solve the following optimization problem

min
w∈Rd,V ∈Rd×k

n∑
i=1

`
(
yi, ỹ(xi|w,V)

)
+
α

2
‖w||2 +

β

2
‖V ‖2F , (3)

where `(y, ỹ) is the loss “suffered” when predicting ỹ instead of y. Throughout
this paper, we assume ` is a twice-differentiable convex function. For instance, for

4 Convex Factorization Machines

predicting continuous outputs, we can use the squared loss `(y, ỹ) = 1
2 (ỹ − y)2.

α > 0 and β > 0 are hyper-parameters which control the trade-off between low
loss and low model complexity. In practice, (3) can be solved using the stochastic
gradient or coordinate descent methods. Both methods have a runtime complex-
ity of O(kNz(X)) per epoch [13], where Nz(X) is the total number of non-zero
elements in X. Assuming (2) is used, this is the same runtime complexity as for
standard matrix factorization. We now state some important properties of the
optimization problem (3), which were not mentioned in [12] and [13].

Proposition 1. The optimization problem (3) is i) convex in w, ii) non-convex
in V and iii) convex in vjs (elements of V taken separately). If we replace∑d
j′=j+1(V V T)jj′xjxj′ by

∑d
j′=j(V V

T)jj′xjxj′ in (1), i.e., if we use diagonal

elements of V V T, then (3) is iv) non-convex in both V and vjs.

Property ii) means that the stochastic gradient and coordinate descent methods
are only guaranteed to reach a local minimum, the quality of which typically
depends on the initialization of V . Property iii) explains why coordinate descent
is a good method for solving (3): it can monotonically decrease the objective (3)
until it reaches a local minimum. Property iv) shows that if we use diagonal
elements of V V T, (3) becomes a much more challenging optimization problem,
possibly subject to more bad local minima. In contrast, our formulation is convex
whether or not we use diagonal elements.

3 Convex formulation

We begin by rewriting the prediction equation (1) as

ŷ(x|w,Z) := wTx+

d∑
j=1

d∑
j′=1

zjj′xjxj′ = wTx+ 〈Z,xxT〉,

where zjj′ denote the entries of the symmetric matrix Z ∈ Sd×d. Clearly, we
need to impose some structure on Z to avoid its O(d2) memory complexity.
We choose to learn a low-rank matrix Z, i.e., rank(Z) � d. Following recent
advances in convex optimization, we can achieve this by regularizing Z with the
nuclear norm (a.k.a. trace norm), which is known to be the tightest convex lower
bound on matrix rank [11]. Given a symmetric matrix Z ∈ Sd×d, the nuclear
norm is defined as (c.f. supplementary material Section C)

‖Z‖∗ := Tr
(√
Z2
)

= ‖λ‖1, (4)

where λ is a vector which gathers the eigenvalues of Z. We see that regularizing
Z with the nuclear norm is equivalent to regularizing its eigenvalues with the `1
norm, which is known to promote sparsity. Since rank(Z) = ‖λ‖0 = | supp(λ)|,
the nuclear norm thus promotes low-rank solutions. We therefore propose to
learn factorization machines by solving the following optimization problem

min
w∈Rd,Z∈Sd×d

n∑
i=1

`
(
yi, ŷ(xi|w,Z)

)
+
α

2
‖w||2 + β‖Z‖∗, (5)

Convex Factorization Machines 5

where, again, ` is a twice-differentiable convex loss function and α > 0 and
β > 0 are hyper-parameters. Problem (5) is jointly convex in w and Z. In our
formulation, there is no rank hyper-parameter (such as k for V). Instead, the
rank of Z is indirectly controlled by β (the larger β, the lower rank(Z)).

Convexity is an important property, since it allows us to derive an efficient
algorithm for finding a global solution (i.e., our algorithm is insensitive to initial-
ization). In addition, our convex formulation is more general than the original
one in the sense that imposing positive semi-definiteness of Z or ignoring diag-
onal elements of Z is not necessary (although it is possible, c.f., Section D and
Section E in the supplementary material).

Any symmetric matrix Z ∈ Sd×d can be written as an eigendecomposition
Z = PΛPT =

∑
s λspsp

T
s , where P is an orthogonal matrix with columns

ps ∈ Rd and Λ = diag(λ) is a diagonal matrix with diagonal entries λs. Using
this decomposition, we can compute predictions efficiently by

ŷ(x|w,PΛPT) = wTx+ 〈PΛPT,xxT〉 = wTx+

k∑
s=1

λs(p
T
s x)2, (6)

where k = rank(Z). Thus, prediction cost is the same as non-convex factoriza-
tion machines, i.e., O(kNz(x)). The algorithm we present in Section 4 always
maintains such a decomposition. Therefore, Z is never materialized in memory
and we can scale to high-dimensional data. Equation (6) also suggests an in-
teresting interpretation of convex factorization machines. Let κ(p,x) = (pTx)2,
i.e., κ is a homogeneous polynomial kernel of degree 2. Then, (6) can be written

as ŷ(x|w,PΛPT) = wTx +
∑k
s=1 λsκ(ps,x). Thus, convex factorization ma-

chines evaluate the homogeneous polynomial kernel between orthonormal basis
vectors p1, . . . ,pk and x. In contrast, kernel ridge regression and other kernel
machines compute predictions using

∑n
i=1 aiκ(xi,x), i.e., the kernel is evaluated

between training instances and x. Thus, the main advantage of convex factor-
ization machines over traditional kernel machines is that the basis vectors are
actually learned from data.

4 Optimization algorithm

To solve (5), we propose a two-block coordinate descent algorithm. That is, we
alternate between minimizing with respect to w and Z until convergence. When
the algorithm terminates, it returns w and Z = PΛPT.

4.1 Minimizing with respect to w

For minimizing (5) with respect to w, we need to solve

min
w∈Rd

n∑
i=1

`(yi,w
Txi + πi) +

α

2
‖w||2, (7)

where πi = 〈Z,xixT
i 〉. This is a standard linear model objective, except that the

predictions are shifted by πi. Thus, we can solve (7) using standard methods.

6 Convex Factorization Machines

Algorithm 1 Minimizing (8) w.r.t. Z

Input: {(xi, yi)}ni=1, initial Z = P diag(λ)PT, β > 0
Zλ :=

∑
s∈supp(λ) λspsp

T
s

repeat
Compute p = dominant eigenvector of ∇L(Zλ)

Find λ = argminλ∈R L
(
Zλ + λppT

)
+ β|λ|

P ← [P p] λ← [λ λ]

Diagonal refitting case

λ̄← λ
λ← argmin

λ∈Rsupp(λ̄) L̃(λ) + β‖λ‖1 = argmin
λ∈Rsupp(λ̄) L(Zλ) + β‖λ‖1

Fully-corrective refitting case
Orthonormalize columns of P
A = argminA∈Sk×k L(PAPT) + β‖A‖∗ where k = rank(Zλ)
P ← PQ λ← diag(Σ) where A = QΣQT

until convergence
Output: Z = P diag(λ)PT

4.2 Minimizing with respect to Z

For minimizing (5) with respect to Z, we need to solve

min
Z∈Sd×d

n∑
i=1

`
(
yi,w

Txi + 〈Z,xixT
i 〉
)

︸ ︷︷ ︸
:=L(Z)

+β‖Z‖∗. (8)

Two standard methods for solving nuclear norm regularized problems are proxi-
mal gradient and ADMM. For these methods, the key operation is the proximal
operator, which requires an SVD and is thus a bottleneck in scaling to large
matrix sizes. In order to address this issue, we adapt greedy coordinate descent
algorithms [4] [7] designed for general nuclear norm regularized minimization.
The main difference of our algorithm is that we learn an eigendecomposition of
Z rather than an SVD, in order to take advantage of the symmetry of Z.

Outline. To minimize (8), on each iteration we greedily find the rank-one
matrix ppT that most violates the optimality conditions and add it to Z by Z ←
Z+λppT, where λ is the optimal weight. Thus, the rank ofZ increases by at most
1 on each iteration. In practice, however, we never materialize Z and maintain
its eigendecomposition Z = P diag(λ)PT instead. To ensure convergence, we
refit the eigendecomposition of Z on each iteration using one of two methods:
diagonal refitting (update λ only) or fully corrective refitting (update both λ
and P). The entire procedure is summarized in Algorithm 1.

Finding λ and p. Using (4) and (6), we obtain that (8) is equivalent to

min
λ∈Θ

n∑
i=1

`
(
yi,w

Txi +
∑
s∈S

λs(p
T
s xi)

2
)

︸ ︷︷ ︸
:=L̃(λ)

+β‖λ‖1, (9)

Convex Factorization Machines 7

where S is an index set for the elements of the set {ppT : p ∈ Rd, ‖p‖ = 1} and
Θ := {λ ∈ RS : supp(λ) is finite}. Thus, we converted a problem with respect
to Z in the space of symmetric matrices to a problem with respect to λ in the
space of (normalized) rank-one matrices. This space can be arbitrarily large.
However, the number of non-zero elements in λ is at most d. Moreover, λ will
be typically sparse thanks to the regularization term β‖λ‖1, i.e., | supp(λ)| =
rank(Z)� d. A difference between (9) and past works [17] [4] is that we do not
constrain λ to be non-negative, since eigenvalues can be negative, unlike singular
values. Constraining λ to be non-negative corresponds to a positive semi-definite
constraint on Z, which we cover in Section D of the supplementary material.

According to the Karush-Kuhn-Tucker (KKT) conditions, for any s ∈ S, the
optimality violation of λs at λ is given by

νs =

|∇sL̃(λ) + β|, if λs > 0

|∇sL̃(λ)− β|, if λs < 0

max
(
|∇sL̃(λ)| − β, 0

)
, if λs = 0,

where ∇sL̃(λ) = ∂L̃(λ)
∂λs

. Using the chain rule, we obtain

∇sL̃(λ) = 〈∇L(Zλ),psp
T
s 〉 = pTs∇L(Zλ)ps,

where Zλ :=
∑
s∈supp(λ) λspsp

T
s and ∇L(Z) ∈ Sd×d is the gradient of L at Z.

Intuitively, we would like to find the eigenvector ps which maximizes νs:

argmax
s6∈supp(λ)

νs = argmax
s∈S

|∇sL̃(λ)| = argmax
s∈S

|pTs∇L(Zλ)ps|

Thus, ps corresponds to the dominant eigenvector of∇L(Zλ) (eigenvector corre-
sponding to the greatest eigenvalue in absolute value). We can find ps efficiently
using the power iteration method. Since ∇L(Zλ) is a d × d matrix, we cannot
afford to store it in memory when d is large. Fortunately, the power iteration
method only accesses ∇L(Zλ) through matrix-vector products ∇L(Zλ)p for
some vector p ∈ Rd. By exploiting the structure of ∇L(Zλ), we can compute
this product efficiently (c.f., Section 4.3 for the squared loss).

Let λ̄ be the current iterate of λ. Once we found ps, we can find λs by

λs = argmin
λ∈R

L̃
(
λ̄+ (λ− λ̄s)es

)
+ β|λ| = argmin

λ∈R
L
(
Zλ̄ + (λ− λ̄s)pspTs

)
+ β|λ|,

(10)
where es = [0, . . . , 0︸ ︷︷ ︸

s−1

, 1, 0, . . . , 0]T. For the squared loss, this problem can be

solved in closed form (c.f., Section 4.3). For other loss functions, we can solve
the problem iteratively.

Diagonal refitting. Similarly to [4], we can refit λ restricted to its current
support. Let λ̄ be the current iterate of λ. Then, we solve

min
λ∈Rsupp(λ̄)

L̃(λ) + β‖λ‖1.

8 Convex Factorization Machines

This can easily be solved by iteratively using (10) for all s ∈ supp(λ̄) until
the sum of violations

∑
s∈supp(λ̄) νs converges. We call this method “diagonal

refitting”, since the matrix Λ = diag(λ) in Z = PΛPT is diagonal.
Fully-corrective refitting. Any matrixZ ∈ Sd×d can be written as PAPT,

where P ∈ Rd×k, A ∈ Sk×k (A not necessarily diagonal) and k = rank(Z). Fol-
lowing a similar idea to [17] and [7], injecting Z = PAPT in (8), we can solve

min
A∈Sk×k

L(PAPT) + β‖A‖∗, (11)

where we used ‖PAPT‖∗ = ‖A‖∗ if P orthonormal. This problem is similar to
(8); only this time, it is k × k dimensional instead of d × d dimensional. Once
we obtained A, we can update P and λ by P ← PQ and λ← diag(Σ), where
QΣQT is an eigendecomposition of A (cheap to compute since A is k × k).

We propose to solve (11) by the alternating direction method of multipliers
(ADMM). To do so, we consider the following augmented Lagrangian

min
A∈Sk×k,B∈Sk×k

L(PAPT) + β‖B‖∗ s.t. A−B = 0. (12)

ADMM solves (12) using the following iterative procedure:

Aτ+1 = argmin
A∈Sk×k

L(PAPT) +
ρ

2
‖A−Bτ +M τ‖2︸ ︷︷ ︸

:=L̂(A)

(13)

Bτ+1 = Sβ/ρ

(
Aτ+1 +M τ

)
(14)

M τ+1 = M τ +Aτ+1 −Bτ+1,

where ρ is a parameter and Sc is the proximal operator (here, shrinkage oper-
ator). In practice, a common choice is ρ = 1. The procedure converges when
‖Aτ −Bτ‖2F ≤ ε. We now explain how to solve (14) and (13).

Given an eigendecomposition A = QΣQT, where Σ = diag(σ1, . . . , σk), the
shrinkage operator is defined as

Sc(A) = argmin
B

1

2
‖A−B‖2F + c‖B‖∗ = Qdiag(σ̂1, . . . , σ̂k)QT, (15)

where σ̂s = sign(σs) max(|σs|−c, 0). In other words, we apply the soft-thresholding
operator to the eigenvalues of A. For solving the sub-problem (13), we can af-
ford to use the Newton method, since k � d. Let ∇L̂(A) ∈ Sk×k and ∇2L̂(A) ∈
Sk2×k2 be the gradient and Hessian of L̂ at A. On each iteration, the Newton
method updates A by

A← A− γD

where D ∈ Rk×k is the solution of the system of linear equations

∇2L̂(A) vec(D) = vec
(
∇L̂(A)

)
(16)

Convex Factorization Machines 9

and γ is adjusted by line search (typically, using the Wolfe conditions). Using
the chain rule, we can compute ∇L̂(A) and ∇2L̂(A) by

∇L̂(A) = PT
(
∇L(Z)|Z=PAPT

)
P + ρ(A−Bτ +M τ)

∇2L̂(A) = PT ⊗ PT
(
∇2L(Z)|Z=PAPT

)
P ⊗ P + ρI

To compute ∇L(Z)|Z=PAPT and ∇2L(Z)|Z=PAPT , we need to compute the
predictions at Z = PAPT. This can be done efficiently by ŷ(x|w,PAPT) =
wTx+ xT(PA)(PTx).

To solve (16), we can use the conjugate gradient method. This method only
accesses the Hessian through Hessian-vector products, i.e., ∇2L̂(A) vec(D). By
using the problem structure together with the property (A ⊗ B) vec(D) =
vec(BDAT), we can usually compute these products efficiently.

4.3 Squared loss case

For the case of the squared loss, we obtain very simple expressions and closed-
form solutions.

Minimizing with respect to w. For the squared loss, (7) becomes

min
w∈Rd

1

2
‖Xw − τ‖2 +

α

2
‖w||2,

where τ ∈ Rn is a vector with elements τi = yi − 〈Z,xixT
i 〉. This is a stan-

dard ridge regression problem. A closed-form solution can be computed by
w = XT(XXT + αI)−1τ in O(n3) or by w = (XTX + αI)−1XTτ in O(d3).
When n and d are both large, we can use an iterative method (e.g., conjugate
gradient) instead.

Finding the dominant eigenvector. For finding the dominant eigenvector
of ∇L(Zλ), we use the power iteration method, which needs to compute matrix-
vector products ∇L(Zλ)p. For the squared loss, the gradient is given by:

∇L(Z) =

n∑
i=1

rixix
T
i = XTRX, (17)

where R = diag(r1, . . . , rn) and ri = ŷi − yi is the residual of xi at (w,Z).
Clearly, we can compute∇L(Zλ)p efficiently without ever materializing∇L(Zλ).

Minimizing with respect to λ. For the squared loss, we obtain that (10)
is equivalent to

λs = argmin
λ∈R

∇sL̃(λ̄)(λ−λ̄s)+
1

2
∇2
ssL̃(λ̄)(λ−λ̄s)2+β|λ| = argmin

λ∈R

1

2

(
λ−λ̃s

)2
+cs|λ|

where λ̃s := λ̄s − ∇sL̃(λ̄)

∇2
ssL̃(λ̄)

and cs := β

∇2
ssL̃(λ̄)

. This is the well-known soft-

thresholding operator, whose closed-form solution is given by

λs = sign(λ̃s) max(|λ̃s| − cs, 0).

10 Convex Factorization Machines

The first and second derivatives of L̃ with respect to λs can be computed effi-
ciently by

∇sL̃(λ) =

n∑
i=1

ri〈pspTs ,xixT
i 〉 =

n∑
i=1

ri(p
T
s xi)

2 (18)

∇2
ssL̃(λ) =

n∑
i=1

〈pspTs ,xixT
i 〉2 =

n∑
i=1

(pTs xi)
4, (19)

where, again, ri = ŷi − yi is the residual of xi at (w,Zλ).
Fully-corrective refitting. For the squared loss, the Newton method gives

the exact solution of (13) in one iteration and γ can be set to 1 (i.e., no line
search needed). Given an initial guess Ā, if we solve the system

∇2L̂(Ā) vec(D) = vec
(
∇L̂(Ā)

)
(20)

w.r.t. vec(D), then the optimal solution of (13) is A = Ā −D. To solve (20),
we use the conjugate gradient method, which accesses the Hessian only through
Hessian-vector products. Thus, we never need to materialize the Hessian matrix.
The gradient and Hessian-vector product expressions are given by

∇L̂(A) = PTXTRXP + ρ(A−B +M) (21)

∇2L̂(A) vec(D) = vec(PTXTΠXP) + ρ vec(D), (22)

where R = diag(r1, . . . , rn), ri = ŷi − yi is the residual of xi at (w,PAPT),
Π = diag(π1, . . . , πn) and πi = 〈PDPT,xix

T
i 〉 = xT

i (PDPT)xi. Note that
the Hessian-vector product is independent of A.

4.4 Computational complexity

We focus our discussion on minimizing w.r.t. Z when using the squared loss
(we assume the implementation techniques described in Section G of the supple-
mentary material are used). For power iteration, the main cost is computing the
matrix-vector product ∇L(Zλ)p. From (17), this costs O(Nz(X)). For minimiz-
ing with respect to λs, the main task consists in computing the first and second
derivatives (18) and (19), which costs O(n). For the fully corrective refitting,
ADMM alternates between (13) and (14). For (13), the main cost stems from
computing the gradient and Hessian-vector product (21) and (22), which takes
O(kNz(X) + dk2). For (14), the main cost stems from computing the eigende-
composition of a k × k matrix, which takes O(k3), where k � d. If we use the
binary indicator representation (2), then convex factorization machines have the
same overall runtime cost as convex matrix factorization [7].

4.5 Convergence guarantees

Our method is an instance of block coordinate descent with two blocks, w and
Z. Past convergence analysis of block coordinate descent typically requires sub-
problems to have unique solutions [2, Proposition 2.7.1]. However, (5) is convex

Convex Factorization Machines 11

in Z but not strictly convex. Hence minimization with respect to Z may have
multiple optimal solutions. Fortunately, for the case of two blocks, the uniqueness
condition is not needed [6]. For minimization with respect to Z, our greedy
coordinate descent algorithm is an instance of [4] when using diagonal refitting
and of [7] when using fully corrective refitting. Both methods asymptotically
converge to an optimal solution, even if we find the dominant eigenvector only
approximately. Thus, our two-block coordinate descent method asymptotically
converges to a global minimum.

5 Experimental results

5.1 Synthetic experiments

We conducted experiments on synthetic data in order to compare the predictive
power of different models:

– Convex FM (use diag): ŷ = wTx+ 〈Z,xxT〉
– Convex FM (ignore diag): ŷ = wTx+ 〈Z,xxT − diag(x)2〉
– Original FM: ŷ = wTx+

∑d
j=1

∑d
j′=j+1(V V T)jj′xjxj′

– Ridge regression: ŷ = wTx
– Kernel ridge regression: ŷ =

∑n
i=1 aiκ(xi,x)

For kernel ridge regression, the kernel used was the polynomial kernel of degree
2: κ(xi,xj) = (γ +xT

i xj)
2. Due to lack of space, the parameter estimation pro-

cedure for Convex FM (ignore diag) is explained in the supplementary material.
We compared the above models under various generative assumptions.

Data generation. We generated y = [y1, . . . , yn]T by yi = wTxi + 〈Z,xixT
i 〉

(use diagonal case) or by yi = wTxi + 〈Z,xixT
i − diag(xi)

2〉 (ignore diagonal
case). To generate w = [w1, . . . , wd]

T, we used wj ∼ N (0, 1) ∀j ∈ [d] where

N (0, 1) is the standard normal distribution. To generate Z = P diag(λ)PT, we
used pjs ∼ N (0, 1) ∀j ∈ [d] ∀s ∈ [k] and λs ∈ N (0, 1) ∀s ∈ [d] (not positive semi-
definite [PSD] case) or λs ∼ U(0, 1) ∀s ∈ [d] (positive semi-definite case), where
U(0, 1) is the uniform distribution between 0 and 1. For generating X ∈ Rn×d,
we compared two cases. In the dense case, we used xij ∼ N (0, 1) ∀i ∈ [n] ∀j ∈ [d].
In the sparse case, we sampled d̄ features from a multinomial distribution whose
parameters are set uniformly at random. We chose n = 1000, d = 50, k = 5
and d̄ = 5. We split the data into 75% training and 25% testing and added 1%
Gaussian noise to the training targets.

Results. Results (RMSE on test data) are indicated in Table 1. Hyper-
parameters of the respective methods were optimized by 5-fold cross-validation.
The setting which is most favorable to Original FM is when the matrix Z used
for generating synthetic data is PSD and diagonal elements of Z are ignored
(2nd and 6th rows in Table 1). In this case, Original FM performed well, although
worse than Convex FM (ignore diag). However, in other settings, especially when
Z is not PSD, convex FM outperformed the Original FM. For example, for dense
data, when Z is not PSD and diagonal elements of Z are ignored, Convex FM

12 Convex Factorization Machines

Table 1: Test RMSE of different methods on synthetic data.

Generative process
Convex FM
(use diag)

Convex FM
(ignore diag)

Original FM Ridge
Kernel ridge

(polynomial kernel)
dense, PSD, use diag 68.35 110.18 104.39 104.67 76.77

dense, PSD, ignore diag 27.45 5.93 5.97 56.91 31.74
dense, not PSD, use diag 92.31 159.47 165.90 223.76 154.12

dense, not PSD, ignore diag 60.74 21.17 139.66 208.55 138.17
sparse, PSD, use diag 23.12 25.23 23.82 25.45 25.10

sparse, PSD, ignore diag 8.93 5.10 5.92 21.41 14.39
sparse, not PSD, use diag 12.75 23.13 30.60 36.43 25.17

sparse, not PSD, ignore diag 11.66 7.91 27.46 34.62 21.75

(use diag) achieved a test RMSE of 60.74, Convex FM (ignore diag) 21.17 and
Original FM 139.66. Ridge regression was the worst method in all settings. This
is not surprising since it does not use feature interactions. Kernel ridge regres-
sion with a polynomial kernel of degree 2 outperformed ridge regression but was
worse than convex FM on all datasets.

5.2 Recommender system experiments

We also conducted experiments on 4 standard recommendation tasks. Datasets
used in our experiments are summarized below.

Dataset n d = |U |+ |I|
Movielens 100k 100,000 (ratings) 2,625 = 943 (users) + 1,682 (movies)
Movielens 1m 1,000,209 (ratings) 9,940 = 6,040 (users) + 3,900 (movies)
Movielens 10m 10,000,054 (ratings) 82,248 = 71,567 (users) + 10,681 (movies)

Last.fm 108,437 (tag counts) 24,078 = 12,133 (artists) + 11,945 (tags)

For simplicity, we used the binary indicator representation (2), which results
in a design matrix X of size n × d. We split samples uniformly at random
between 75% for training and 25% for testing. For Movielens datasets, the task
is to predict ratings between 1 and 5 given by users to movies, i.e., y ∈ {1, . . . , 5}.
For Last.fm, the task is to predict the number of times a tag was assigned to an
artist, i.e., y ∈ N. In all experiments, we set α = 10−9 for convex and original
factorization machines, as well as ridge regression. Because we used the binary
indicator representation (2), w plays the same role as unpenalized bias terms
(c.f., Section A in the supplementary material).

Solver comparison. For minimizing our objective function with respect
to Z, we compared greedy coordinate descent (GCD) with diagonal refitting
and with fully-corrective refitting, the proximal gradient method and ADMM.
Minimization with respect to w was carried out using the conjugate gradient
method. Results when setting β = 10 are given in Figure 1. We were only able
to run ADMM on Movielens 100K because it needs to materialize Z in memory.
Experiments were run on a machine with Intel Xeon X5677 CPU (3.47GHz) and
48 GB memory.

Results. GCD with fully-corrective refitting was consistently the best solver
both with respect to objective value and test RMSE. GCD with diagonal refitting

Convex Factorization Machines 13

converged slower with respect to objective value but was similar with respect
to test RMSE, except on Last.fm. The proximal gradient and ADMM methods
were an order of magnitude slower than GCD.

Model comparison. We used the same setup as in Section 5.1 except that
we replaced kernel ridge regression with support vector regression (we used the
implementation in libsvm, which has a kernel cache and scales better than kernel
ridge regression w.r.t. n). For hyper-parameter tuning, we used 3-fold cross-
validation (CV). For convex and original factorization machines, we chose β from
10 log-spaced values between 10−1 and 102. For original factorization machines,
we also chose k from {10, 20, 30, 40, 50}. For Movielens 10M, we only chose β
from 5 log-spaced values and we set k = 20 in order to reduce the search space.
For SVR, we chose the regularization parameter C from 10 log-spaced values
between 10−5 and 105. For convex factorization machines, we made use of warm-
start when computing the regularization path in order to accelerate training. For
practical reasons, we used early stopping in order to keep rank(Z) under 50.

Results. Test RMSE, training time (including hyper-parameter tuning using
3-fold CV) and the rank obtained (when applicable) are indicated in Table 2.
Except on Movielens 100k, Convex FM (ignore diag) obtained lower RMSE, was
faster to converge and obtained lower rank than Convex FM (use diag). This
comes however at the cost of more complicated gradient and Hessian expressions
(c.f., Section E in the supplementary material for details). Except on Movielens
10M, Convex FM (ignore diag) obtained lower RMSE than Original FM. Train-
ing time was also lower thanks to the reduced number of hyper-parameters to
search. Ridge regression (RR) was a surprisingly strong baseline, SVR was worse
than RR. This is due to the extreme sparsity of the design matrix when using the
binary indicator representation (2). Since features co-occur exactly only once,
SVR cannot exploit the feature interactions despite the use of polynomial kernel.
In contrast, factorization machines are able to exploit feature interactions de-
spite high sparsity thanks to the parameter sharing induced by the factorization
Z = PΛPT.

6 Related work

Recently, convex formulations for the estimation of a low-rank matrix have been
extensively studied. The key idea [5] is to replace the rank of a matrix, which is
non-convex, by the nuclear norm (a.k.a. trace norm), which is known to be the
tightest convex lower bound on matrix rank [11]. Nuclear norm regularization has
been applied to numerous applications, including multi-task learning and matrix
completion [18]. The latter is typically formulated as the following optimization
problem. Given a matrix X ∈ R|U |×|I| containing missing values, we solve

min
M∈R|U|×|I|

1

2
‖PΩ(X)− PΩ(M)‖2F + λ‖M‖∗, (23)

whereΩ is the set of observed values inX and (PΩ(M))i,j = (M)i,j if (i, j) ∈ Ω,
0 otherwise. Extensions to tensor factorization have also been proposed for data

14 Convex Factorization Machines

10-1 100 101 102

CPU time (seconds)

10-3

10-2

10-1

100

R
el

at
iv

e
ob

je
ct

iv
e

er
ro

r

GCD (diagonal refitting)
GCD (fully-corrective refitting)
Proximal gradient
ADMM

10-1 100 101 102

CPU time (seconds)

0.930

0.935

0.940

0.945

0.950

0.955

0.960

0.965

0.970

Te
st

 R
M

S
E

(a) Movielens 100K

100 101 102 103

CPU time (seconds)

10-3

10-2

10-1

100

R
el

at
iv

e
ob

je
ct

iv
e

er
ro

r

GCD (diagonal refitting)
GCD (fully-corrective refitting)
Proximal gradient

100 101 102 103

CPU time (seconds)

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

Te
st

 R
M

S
E

(b) Movielens 1M

101 102 103 104

CPU time (seconds)

10-3

10-2

10-1

100

R
el

at
iv

e
ob

je
ct

iv
e

er
ro

r

GCD (diagonal refitting)
GCD (fully-corrective refitting)
Proximal gradient

101 102 103 104

CPU time (seconds)

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Te
st

 R
M

S
E

(c) Movielens 10M

10-1 100 101 102 103

CPU time (seconds)

10-2

10-1

100

101

R
el

at
iv

e
ob

je
ct

iv
e

er
ro

r

GCD (diagonal refitting)
GCD (fully-corrective refitting)
Proximal gradient

10-1 100 101 102 103

CPU time (seconds)

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Te
st

 R
M

S
E

(d) Last.fm

Fig. 1: Solver comparison when using α = 10−9 and β = 10. Left: relative objec-
tive error |(f t− f∗)/f∗|, where f t is the objective value measured on time t and
f∗ is the optimal objective value. Right: RMSE on test data.

Convex Factorization Machines 15

Table 2: Test RMSE, training time (including hyper-parameter tuning using
3-fold cross-validation) and rank of different models on real data. Results are
averaged over 3 runs using different train / test splits (rank uses the median).

Dataset
Convex FM
(use diag)

Convex FM
(ignore diag)

Original FM Ridge
SVR

(polynomial
kernel)

Movielens 100k
RMSE 0.93 0.93 0.93 0.95 1.20
Time 7.09 min 6.72 min 10.05 min 0.28 s 35.30 s
Rank 23 20 20

Movielens 1m
RMSE 0.87 0.85 0.86 0.91 1.24
Time 1.07 h 38.74 min 3.93 h 3.14 s 3.68 min
Rank 27 20 20

Movielens 10m
RMSE 0.84 0.82 0.81 0.87 N/A
Time 5.02 h 4.29 h 5.84 h 59.35 s N/A
Rank 34 17 20

Last.fm
RMSE 2.21 2.05 2.13 2.60 3.24
Time 7.77 min 6.91 min 14.17 min 0.63 s 36.70 s
Rank 50 48 40

with more than two modes (e.g., user, item and time) [19]. However, in (23)
and tensor extensions, it is not trivial to incorporate auxiliary features such as
user (age, gender, ...) and item (release date, director’s name, ...) attributes. The
most related work to convex factorization machines is [1], in which a collabo-
rative filtering method which can incorporate additional attributes is proposed.
However, their method can only handle two modes (e.g., user and item) and no
scalable learning algorithm is proposed. The advantage of convex factorization
machines is that it is very easy to engineer features, even for more than two
modes (e.g., user, item and context).

7 Conclusion

Factorization machines are a powerful framework that can exploit feature inter-
actions even when features co-occur very rarely. In this paper, we proposed a
convex formulation of factorization machines. Our formulation imposes fewer re-
strictions on the feature interaction weight matrix and is thus more general than
the original one. For solving the corresponding optimization problem, we pre-
sented an efficient globally-convergent two-block coordinate descent algorithm.
Our formulation achieves comparable or lower predictive error on several syn-
thetic and real-world benchmarks. It can also overall be faster to train since it
has one less hyper-parameter than the original formulation. As a side contribu-
tion, we also clarified the convexity properties (or lack thereof) of the original
factorization machine’s objective function. Future work includes trying (convex)
factorization machines on more data (e.g., genomic data, where feature interac-
tions should be useful) and developing algorithms for out-of-core learning.

16 Convex Factorization Machines

References

1. Abernethy, J., Bach, F., Evgeniou, T., Vert, J.P.: A new approach to collaborative
filtering: Operator estimation with spectral regularization. J. Mach. Learn. Res.
10, 803–826 (2009)

2. Bertsekas, D.P.: Nonlinear programming. Athena scientific Belmont (1999)
3. Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Nic-

ulae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J.,
Joly, A., Holt, B., Varoquaux, G.: API design for machine learning software: expe-
riences from the scikit-learn project. In: ECML PKDD Workshop: Languages for
Data Mining and Machine Learning. pp. 108–122 (2013)

4. Dudik, M., Harchaoui, Z., Malick, J.: Lifted coordinate descent for learning with
trace-norm regularization. In: AISTATS. vol. 22, pp. 327–336 (2012)

5. Fazel, M., Hindi, H., Boyd, S.P.: A rank minimization heuristic with application to
minimum order system approximation. In: American Control Conference. vol. 6,
pp. 4734–4739 (2001)

6. Grippo, L., Sciandrone, M.: On the convergence of the block nonlinear gauss–
seidel method under convex constraints. Operations Research Letters 26(3), 127–
136 (2000)

7. Hsieh, C.J., Olsen, P.: Nuclear norm minimization via active subspace selection.
In: ICML. pp. 575–583 (2014)

8. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative fil-
tering model. In: KDD. pp. 426–434 (2008)

9. Koren, Y.: Collaborative filtering with temporal dynamics. Communications of the
ACM 53(4), 89–97 (2010)

10. Loni, B., Shi, Y., Larson, M., Hanjalic, A.: Cross-domain collaborative filtering
with factorization machines. In: Advances in Information Retrieval, pp. 656–661.
Springer (2014)

11. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM review 52(3), 471–501
(2010)

12. Rendle, S.: Factorization machines. In: ICDM. pp. 995–1000. IEEE (2010)
13. Rendle, S.: Factorization machines with libfm. ACM Transactions on Intelligent

Systems and Technology (TIST) 3(3), 57–78 (2012)
14. Rendle, S.: Scaling factorization machines to relational data. In: VLDB. vol. 6, pp.

337–348 (2013)
15. Rendle, S., Gantner, Z., Freudenthaler, C., Schmidt-Thieme, L.: Fast context-aware

recommendations with factorization machines. In: SIGIR. pp. 635–644 (2011)
16. Rendle, S., Schmidt-Thieme, L.: Pairwise interaction tensor factorization for per-

sonalized tag recommendation. In: WSDM. pp. 81–90. ACM (2010)
17. Shalev-Shwartz, S., Gonen, A., Shamir, O.: Large-scale convex minimization with

a low-rank constraint. In: ICML. pp. 329–336 (2011)
18. Srebro, N., Rennie, J., Jaakkola, T.S.: Maximum-margin matrix factorization. In:

Advances in neural information processing systems. pp. 1329–1336 (2004)
19. Tomioka, R., Hayashi, K., Kashima, H.: Estimation of low-rank tensors via convex

optimization. arXiv preprint arXiv:1010.0789 (2010)

Convex Factorization Machines 17

Supplementary material
A Equivalence with matrix factorization

Let U be a set of users and I a set of items. Matrix factorization models typically
predict missing values using

ŷui := AT
uBi + au + bi ∀u ∈ U ∀i ∈ I,

where A ∈ R|U |×k, B ∈ R|I|×k, a ∈ R|U | and b ∈ R|I|. If we use the binary
indicator representation (2), then factorization machines are exactly equivalent
to matrix factorization. To see why, choose

V :=

(
A
B

)
∈ Rd×k where d = |U |+ |I|

w :=

(
a
b

)
∈ Rd.

Then

ŷui = V T
uV j

=1︷ ︸︸ ︷
xuxj +wu

=1︷︸︸︷
xu +wj

=1︷︸︸︷
xj where j = |U |+ i

= AT
uBi + au + bi.

Furthermore, we have

V V T =

(
A
B

)(
AT BT

)
=

(
AAT ABT

BAT BBT

)
.

Since j′ > j in (1), if we use the binary indicator representation (2), factorization
machines only use the upper-right block. Note, however, that even though they
are not used, other blocks will not be zero.

The equivalence with matrix factorization also holds for convex factorization
machines as long as we ignore the diagonal elements of Z and we constrain Z to
be positive semi-definite (and thus, there exists V such that Z = V V T). If we
use diagonal elements or do not use a positive semi-definite constraint, convex
factorization machines may learn a slightly different model.

B Proof of Proposition 1

We want to minimize

F =

n∑
i=1

`i +
α

2
‖w||2 +

β

2
‖V ‖2F ,

where

`i = `(yi, ỹi) and ỹi = wTxi +
1

2

k∑
s=1

[(d∑
j=1

vjsxij

)2
−

d∑
j=1

v2jsx
2
ij

]
.

18 Convex Factorization Machines

The first and second derivatives of F w.r.t. vjs are given by

∂F

∂vjs
=

n∑
i=1

∂`i
∂ỹi

∂ỹi
∂vjs

+ βvjs

∂2F

∂v2js
=

n∑
i=1

[
∂2`i

∂vjs∂ỹi

∂ỹi
∂vjs

+
∂`i
∂ỹi

∂2ỹi
∂v2js

]
+ β

=

n∑
i=1

[
∂2`i
∂ỹ2i

(
∂ỹi
∂vjs

)2
]

+ β

≥ 0,

where we used

∂ỹi
∂vjs

= xij

(d∑
j′=1

vj′sxij′ − vjsxij
)
,

∂2ỹi
∂v2js

= 0, and
∂2`i

∂vjs∂ỹi
=
∂2`i
∂ỹ2i

∂ỹi
∂vjs

.

Therefore, F is convex w.r.t. vjs if ` is twice differentiable convex, and strictly

convex if, in addition, β > 0. If we use the diagonal elements of V V T, then
∂2ỹi
∂v2js
6= 0 and F becomes non-convex w.r.t. vjs. Non-convexity w.r.t. V (whether

we use diagonal elements of V V T or not) can easily be verified by finding
counter-examples (checked either visually or numerically).

C Nuclear norm of a symmetric matrix

For any symmetric matrix Z ∈ Sd×d, the nuclear norm is defined as

‖Z‖∗ = Tr
(

(Z2)
1
2

)
= Tr

(
(PΛPTPΛPT)

1
2

)
eigendecomposition of Z

= Tr
(

(PΛ2PT)
1
2

)
orthogonality of P

= Tr
(
P (Λ2)

1
2PT

)
square root of an eigendecomposition

= Tr
(

(Λ2)
1
2

)
trace of a PSD matrix

= Tr
(
|Λ|
)

= ‖λ‖1 Λ = diag(λ).

D Positive semi-definite constraint

To constrain Z to be positive semi-definite (PSD), we only need to make a few
straightforward modifications. We need to impose a non-negativity constraint

Convex Factorization Machines 19

on λ. Thus, the optimality violation with respect to λs becomes

νs =

{
|∇sL̃(λ) + β|, if λs > 0

|min(∇sL̃(λ) + β, 0)|, if λs = 0.

For finding ps with greatest violation, we need to solve

argmin
s∈S

∇sL̃(λ) = argmin
s∈S

pTs∇L(Zλ)ps = argmax
s∈S

pTs

(
−∇L(Zλ)

)
ps.

Thus, we need to find the eigenvector of −∇L(Zλ) with largest eigenvalue. The
closed-form solution for updating λs (squared loss case) becomes

λs = max(λ̃s − cs, 0).

where, again, λ̃s := λ̄s− ∇sL̃(λ̄)

∇2
ssL̃(λ̄)

and cs := β

∇2
ssL̃(λ̄)

. Given an eigendecomposition

A = QΣQT, where Σ = diag(σ1, . . . , σk), the shrinkage operator becomes

Sc(A) = argmin
B�0

1

2
‖A−B‖2F + c‖B‖∗ = Qdiag(σ̂1, . . . , σ̂k)QT,

where σ̂s = max(σs − c, 0). Note that if A � 0, then Z = PAPT � 0 as well.

E Ignoring diagonal elements of Z

We can ignore diagonal elements of Z like in the original factorization machines,
albeit at the cost of slightly more complicated expressions. The prediction func-
tion becomes

ŷ(x|w,PΛPT) := wTx+ 〈PΛPT,xxT − diag(x)2〉

= wTx+
∑

s∈supp(λ)

λs

[
(pTs x)2 − ‖ps ◦ x‖2

]
.

We now focus on the squared loss. The gradient of L becomes

∇L(Z) =

n∑
i=1

ri(xix
T
i − diag(xi)

2) = XTRX −∆,

where R = diag(r1, . . . , rn), ri = wTxi + 〈PAPT,xi,x
T
i − diag(xi)

2〉 and
∆ =

∑n
i=1 ri diag(xi)

2. The first and second derivatives of L̃ with respect to λs
can be computed efficiently as follows

∇sL̃(λ) =

n∑
i=1

ri〈pspTs ,xixT
i − diag(xi)

2〉 =

n∑
i=1

ri

[
(pTs xi)

2 − ‖ps ◦ xi‖2
]

∇2
ssL̃(λ) =

n∑
i=1

〈pspTs ,xixT
i − diag(xi)

2〉2 =

n∑
i=1

[
(pTs xi)

2 − ‖ps ◦ xi‖2
]2
.

20 Convex Factorization Machines

The gradient and Hessian-vector product expressions of L̂ with respect to A
become

∇L̂(A) = PTXTRXP − PT∆P + ρ(A−B +M)

∇2L̂(A) vec(D) = vec(PTXTΠXP)− vec(PT∆̃P) + ρ vec(D),

whereΠ = diag(π1, . . . , πn), πi = 〈PDPT,xix
T
i −diag(xi)

2〉 and ∆̃ =
∑n
i=1 πi diag(xi)

2.

F Proximal gradient method

On each iteration, the proximal gradient method updates Z using

Zt+1 = Sβ/µ

(
Zt − 1

µ
∇L(Zt)

)
,

where µ is a step-size parameter and Sc is the shrinkage operator (15). For
computing the eigendecomposition of Zt − 1

µ∇L(Zt), we can use the Lanczos

method, which only needs Zt− 1
µ∇L(Zt) through matrix-vector products. Thus

as long as we maintain Z in factorized form, the proximal gradient method does
not need to materialize Z. Our implementation is based on the eigsh function
available in SciPy’s scipy.sparse.linalg module. Matrix-vector products can
be implemented using the LinearOperator class available from the same module.

G Implementation details

For expressions such as (17), (18), (19), (21) and (22), we only need to iterate
over non-zero features. Thus, we store the design matrix X in sparse row-major
format. For the diagonal refitting case, we only change one λs at a time. We can
store the current model predictions ŷ1, . . . , ŷn. From (6), when λs is modified by
λs ← λs + δ, we simply need to modify ŷi by ŷi ← ŷi + δ(pTs xi)

2. We can cache
pTs xi for all i ∈ [n] and for all s ∈ supp(λ). Additionally, for the squared loss,
we can cache ∇2

ssL̃(λ) for all s ∈ supp(λ), since it is independent of λ; see (19).
For the fully corrective case, we maintain Z in the form PAPT throughout
the course of the algorithm. We also make extensive use of warm start. When
minimizing with respect to w or Z, we use the current estimate as initialization.
Warm start can also be used to compute a regularization path. A simple tech-
nique for improving convergence speed is to perform refitting only periodically.
Finally, while our algorithm does not strictly require a rank parameter, we can
define a maximum rank “budget” parameter. Because our algorithm is greedy,
we can stop it when this budget is reached (early stopping).

	Convex Factorization Machines

