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Abstract—Dual decomposition methods are the current state-
of-the-art for training multiclass formulations of Support Vec-
tor Machines (SVMs). At every iteration, dual decomposition
methods update a small subset of dual variables by solving a
restricted optimization problem. In this paper, we propose an
exact and efficient method for solving the restricted problem.
In our method, the restricted problem is reduced to the well-
known problem of Euclidean projection onto the positive simplex,
which we can solve exactly in expected O(k) time, where k is the
number of classes. We demonstrate that our method empirically
achieves state-of-the-art convergence on several large-scale high-
dimensional datasets.

I. INTRODUCTION

Support Vector Machines (SVMs) [1] are arguably one
of the most popular algorithms for classification. Although
SVMs were originally designed for binary classification, many
approaches have since then been proposed to tackle multiclass
classification. Roughly, these approaches can be divided into
two categories. On one hand, indirect approaches such as
one-vs-rest (a.k.a. one-vs-all), one-vs-one and error-correcting
output codes reduce multiclass classification to multiple binary
classification problems. On the other hand, multiclass SVM
formulations [2]–[4] tackle multiclass classification directly by
minimizing a single objective function. In this paper, we focus
on the Crammer-Singer formulation [3], which is by far the
most popular direct multiclass SVM formulation.

When it comes to training multiclass SVMs, dual decom-
position (a.k.a. dual block coordinate descent/ascent) methods
have been shown [5], [6] to outperform other methods such
as exponentiated gradient [7], cutting-plane [8] and stochas-
tic (sub)-gradient [9]. At every iteration, dual decomposition
methods update a small subset of dual variables by solving a
restricted optimization problem. In their original paper, Cram-
mer and Singer [3] proposed to solve this problem numerically
using a fixed point method. Keerthi et al. [5] studied the
Crammer-Singer formulation with the linear kernel in mind
and proposed to solve the problem using an active set method
for quadratic programming. In the structured SVM literature,
Bordes et al. [10], as well as Balamurugan et al. [6], used
Sequential Minimal Optimization (SMO) [11] to solve the
restricted optimization problem. More recently, Lacoste-Julien
et al. [12] proposed a block Frank-Wolfe method, which solves
a linear approximation of the restricted problem.

In this paper, we propose an exact and efficient method for
solving the restricted problem. In our method, the restricted
problem is reduced to the well-known problem of Euclidean
projection onto the positive simplex, which we can solve ex-
actly in expected O(k) time, where k is the number of classes.

We conduct an extensive empirical comparison of several
methods for solving the restricted problem and demonstrate
on several large-scale high-dimensional datasets that our exact
method for solving the restricted problem is computationally
cheap and leads to fast convergence in practice.

II. MULTICLASS SVMS

Multiclass SVMs classify an input vector x ∈ Rd into one
of k classes using the following simple rule:

ŷ = argmax
m∈[k]

wT
mx. (1)

Each vector wm ∈ Rd can be thought as a prototype
representing the mth class and the inner product wT

mx as the
score of the mth class with respect to x. Therefore, Eq. (1)
chooses the class with highest score. Given n training instances
xi ∈ Rd and their associated labels yi ∈ [k], the Crammer-
Singer multiclass SVM formulation [3] estimates w1, . . . ,wk

by solving the following optimization problem:

minimize
w1,...,wk

1

2

k∑
m=1

‖wm‖2 +C

n∑
i=1

[
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m 6=yi
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yixi

]
+
,

(2)
where C > 0 is a regularization parameter and [u]+ = 0 if
u < 0 and u otherwise. Intuitively, Eq. (2) means that, for each
training instance, we suffer no loss if the score of the correct
class is larger than the score of the “closest” class by at least
1. In the remainder of this paper, we assume that ‖xi‖ > 0,
since any xi with ‖xi‖ = 0 (which can only happen if xi = 0)
does not affect the solution of Eq. (2). The dual of Eq. (2) is
given by [3], [5]

minimize
α

f(α) =
1

2

k∑
m=1

‖wm(α)‖2 +

n∑
i=1

k∑
m=1

∆m
i α

m
i

subject to αmi ≤ Cmi ∀i ∈ [n] ∀m ∈ [k]
k∑

m=1

αmi = 0 ∀i ∈ [n],

(3)
where Cmi = C if m = yi and Cmi = 0 otherwise, ∆m

i = 0
if m = yi and 1 otherwise . The primal-dual relationship is
given by

wm(α) =

n∑
i=1

αmi xi ∀m ∈ [k].

The gradient of f plays an important role and is given by

gmi =
∂f

∂αmi
= wm(α)Txi + ∆m

i ∀i ∈ [n] ∀m ∈ [k]. (4)



Following [3], we have an optimal solution if and only if vi =
0 ∀i ∈ [n], where

vi = max
m∈[k]

gmi − min
m∈[k]:αm

i <C
m
i

gmi ∀i ∈ [n]. (5)

The larger vi, the more α1
i , . . . , α

k
i violate the optimality

conditions. In practice, given a tolerance parameter ε, we can
stop an optimization algorithm if vi < ε ∀i ∈ [n].

III. DUAL DECOMPOSITION FOR MULTICLASS SVMS

The main idea of dual decomposition methods is to update
at every iteration a small subset of dual variables, keeping
all others fixed. Since the variables α1

i , . . . , α
k
i associated

with xi are tied by an equality constraint, a natural choice
for decomposition methods is to update these variables as a
block. Let αi, gi and Ci be k-dimensional vectors that gather
elements αmi , gmi and Cmi for all m ∈ [k]. Our goal is to find
δi ∈ Rk such that the update αi ← αi + δi maximizes the
decrease of the dual objective. Then the restricted problem is

minimize
δi

f̂(δi) =
‖xi‖2

2
||δi||2 + gTi δi

subject to δi ≤ Ci −αi
δTi 1 = 0,

(6)

where 1 is the k-dimensional vector of all ones and αi is fixed
to its current estimate. This can be derived by using the second-
order Taylor expansion f̂(δi) = gTi δi + 1

2δ
T
i Hiδi, where

Hi ∈ Rk×k is the partial Hessian matrix associated with xi.
It is easy to see that Hi = ‖xi‖2I (i.e., a diagonal matrix),
thus leading to the simple form in Eq. (6). A non-linear kernel
κ can easily be used by replacing inner products xT

i xj in Eq.
(4) by κ(xi,xj) and ‖xi‖2 in Eq. (6) by κ(xi,xi).

We summarize dual decomposition for multiclass SVMs
assuming a linear kernel in Algorithm 1. Note that we up-
date the vectors αi in cyclic order after shuffling the data.
Cyclic or random selection are known to be the most cost-
effective schemes for the linear kernel [5]. For non-linear
kernels, gradient-based selection schemes are usually used [3].
Decomposition methods were shown to converge to a global
solution in a finite number of steps in [13].

Solving Eq. (6) is the core problem that must be solved in
order to train multiclass SVMs by dual decomposition. It is
possible to solve Eq. (6) using a generic quadratic program
solver. However, that would take O(k2) time. Therefore,
several works in the literature have investigated developing
efficient algorithms. Crammer and Singer originally proposed
two methods for solving Eq. (6): an exact procedure based on
sorting with complexity O(k log k) [14] and an approximate
fixed-point method with complexity O(k) [3]. Keerthi et al.
[5] used an active set method for quadratic programming,
unfortunately, omitting the details. The problem in Eq. (6) or
related problems were also investigated in the structured SVM
literature. Bordes et al. [10], as well as Balamurugan et al. [6],
used Sequential Minimal Optimization (SMO) [11] to obtain
an approximate solution. More recently, Lacoste-Julien et al.
[12] proposed a block Frank-Wolfe method. The main idea of
their method is to solve a linear approximation of the restricted
problem (i.e., without Hessian term), for which there exists a
closed-form solution.

Algorithm 1 Dual decomposition for multiclass SVMs

Input: {(xi, yi)}ni=1, C > 0, ε > 0
Initialize α← 0 and wm ← 0 ∀m ∈ [k]
Shuffle data
repeat
vmax ← −∞
for i ∈ [n] do

Compute violation vi by Eq. (5)
vmax ← max(vmax, vi)
if vi > 0 then

Find δi by solving Eq. (6)
αi ← αi + δi and wm ← wm + δmi xi ∀m ∈ [k]

end if
end for

until vmax ≤ ε
Output: α and w1, . . . ,wk

IV. REDUCTION TO PROJECTION ONTO THE SIMPLEX

While upon first inspection the optimization problem in Eq.
(6) looks very specific to the dual problem in Eq. (3), we show
in this section that we can reduce the problem to a much more
standard form. Lemma 1 characterizes our reduction.

Lemma 1: Let β̂ = ||xi||(Ci − αi) + gi
||xi|| and z =

C||xi||. If β is the optimal solution of

minimize
β

1

2
||β − β̂||2

subject to β ≥ 0

βT1 = z,

(7)

then the optimal solution of Eq. (6) is δi = Ci−αi− β
||xi|| .

The problem in Eq. (7) is known as the Euclidean pro-
jection onto the positive simplex when z > 0 and onto the
probabilistic simplex when z = 1 [15]. Geometrically, the
problem corresponds to finding the closest point to β̂ which is
both in the non-negative orthant and on the hyperplane defined
by βT1 = z.

While previous studies solved Eq. (6), Lemma 1 shows
that we can solve Eq. (7) instead. In other words, we can
use the Euclidean projection onto the positive simplex as a
“building block” for training multiclass SVMs. This is very
useful because the projection is a standard problem which
appears in many fields, notably in imaging and statistics. It is
also known that the projection onto the `1-ball can be reduced
to the projection onto the positive simplex [15]. Furthermore,
as we present in the sequel, the projection on the positive
simplex can be computed exactly in expected O(k) time. No
algorithm with this type of guarantee was reported in the SVM
literature for solving Eq. (6).

We now briefly present how to compute the projection onto
the positive simplex. The Lagrangian of the problem in Eq. (7)
is

L =
1

2
‖β − β̂‖2 + θ

( k∑
m=1

βm − z
)
− ωTβ,

where θ ∈ R is Lagrange multiplier and ω ∈ Rk
+ is a

vector of non-negative Lagrange multipliers. Differentiating



the Lagrangian with respect to βm and solving for zero gives
the optimality condition

βm = β̂m − θ + ωm.

The KKT complementary slackness conditions require that
βmωm = 0 ∀m. It follows that if βm > 0, then ωm = 0 and
thus βm = β̂m − θ. Otherwise, the non-negativity constraint
implies that βm = 0. Wrapping up the two cases, the solution
must take the following form:

βm =
[
β̂m − θ

]
+
.

Intuitively, β1, . . . , βk are tied by a single variable θ ∈ R.
Therefore, finding β ∈ Rk reduces to finding θ ∈ R. We
present two methods for finding θ.

The first method, due to Shalev-Shwartz and Singer
[16], is based on sorting. The authors show that if
we sort β̂ into µ and define the function π(m) ≡
1
m

(∑m
r=1 µr−z

)
, then the exact solution is θ = π(ρ), where

ρ = max
{
m ∈ [k] : µm − π(m) > 0

}
. The procedure, which

takes O(k log k) because of sorting, is summarized below.

Algorithm 2 Sort algorithm for projection onto the simplex

Input: β̂ ∈ Rk, a scalar z > 0
Sort β̂ into µ: µ1 ≥ µ2 ≥ · · · ≥ µk

Find ρ = max
{
m ∈ [k] : µm − π(m) > 0

}
Output: β where βm =

[
β̂m − π(ρ)

]
+
∀m ∈ [k]

This complexity can be reduced to expected O(k) time
while maintaining exactness of the solution by using a ran-
domized pivot algorithm [15]. The pivot algorithm does not
need to sort β̂ beforehand: informally, it computes the solution
“on the fly” while partially sorting β̂. See Figure 2 of [15] for
the algorithm.

The sort and pivot algorithms compute θ exactly in
O(k log k) and expected O(k) time, respectively. We now
present a method for computing θ approximately in worst-case
O(k) time. The method is based on casting the projection onto
the simplex as a root finding problem. Lemma 2 characterizes
the root finding problem and gives some useful properties.

Lemma 2: The optimal solution of Eq. (7) is β where
βm =

[
β̂m − θ

]
+
∀m ∈ [k] and θ is the root of φ(t) =∑k

m=1

[
β̂m−t

]
+
−z. Moreover, the following properties hold:

1) β̂
T
1 > z if vi > 0

2) φ(t) is a continuous decreasing function on [0,∞)
3) φ(0) > 0
4) φ(U) < 0 where U = maxm β̂m

The proof is similar to the proof of Theorem 1 in [17] and
of Lemma 2 in [18]. Property 1 of Lemma 2 is specific
to our reduction and geometrically means that β̂ is always
above the hyperplane defined by βT1 = z. Thus, to satisfy
βT1 = z, we must necessarily have θ > 0. Properties 2
to 4 imply that φ(t) must necessarily cross zero between 0

and U (Intermediate Value Theorem) and thus θ ∈ (0, U ].
While any root finding suitable for non-differentiable functions
can be used, we recommend to use bisection, which is both
conceptually simple and finds an approximate solution in
worst-case O(k) complexity. Starting from [0, U ], bisection
works by repeatedly halving the current interval and selecting
the subinterval in which the root must lie. We summarize the
procedure below.

Algorithm 3 Bisection for projection onto the simplex

Input: β̂ ∈ Rk, a scalar z > 0, a tolerance parameter τ
l← 0 u← U s←∞
while |s|/z > τ do
θ ← (l + u)/2
s← φ(θ)
u← θ if s < 0 or l← θ otherwise

end while
Output: β where βm =

[
β̂m − θ

]
+
∀m ∈ [k]

Before solving Eq. (7) by Algorithm 2 or 3, we need to
compute β̂, which depends on the partial gradient gi. For the
linear kernel, computing gi takes O(kd̄) time, where d̄ is the
average number of non-zero features per training instance. This
is larger than O(k) and typically larger than O(k log k) as well.
For non-linear kernels, the cost of computing gi is even larger,
O(nkd̄). Therefore, the cost of computing gi outweighs the
cost of solving Eq. (7), even exactly. Our experiments confirm
that solving Eq. (7) exactly is computationally cheap and leads
to fast convergence in practice.

In [7] and [12], the exponentiated gradient (EG) and Frank-
Wolfe (FW) methods were used to solve the dual objective
of structured SVMs, which is quadratic function with simplex
constraints. However, EG and FW solve the restricted problem
only approximately (FW solves a linear approximation of the
restricted problem, i.e., without Hessian term). Furthermore,
the restricted problem for the dual in [7], [12] cannot be
reduced to the same form as Eq. (7).

V. EMPIRICAL EVALUATION

We conducted experiments on 4 publicly available high-
dimensional datasets: Amazon7 [19], [20] (product reviews),
RCV1 (news documents), News20 (newsgroup messages) and
Sector (web-pages). The dataset characteristics are summarized
in Table I. All results reported in this section were obtained by
repeating each experiment 10 times with a different train/test
split. Each time, we used stratified selection in order to split
the dataset into 4/5 training and 1/5 testing. Unless otherwise
specified, throughout our experiments we used C = 1 for
RCV1, News20, Sector, and C = 0.01 for Amazon7. In all
experiments, we used the linear kernel.

TABLE I: Datasets used in this section.

Dataset Instances Features Non-zero features Classes
Amazon7 1,362,109 262,144 0.04% 7

RCV1 534,135 47,236 0.1% 52
News20 18,846 130,088 0.1% 20
Sector 9,619 55,197 0.3% 105



A. Comparison between proposed and existing methods

We compared the following methods for solving the re-
stricted problem Eq. (6) or its equivalent form Eq. (7):

- Sort: solves Eq. (7) exactly in O(k log k) time (c.f.,
Algorithm 2)

- Pivot: solves Eq. (7) exactly in expected O(k) time
(c.f., Figure 2 of [15])

- Bisection: solves Eq. (7) approximately in O(k) time
(c.f., Algorithm 3)

- Sequential Minimal Optimization (SMO): solves Eq.
(6) approximately by iteratively updating pairs of
variables

- Frank-Wolfe (FW): solves a linear approx. of Eq. (6)

Details regarding the SMO and FW methods are given in the
supplementary material. For bisection, we set the tolerance
parameter of the stopping criterion to τ = 10−3. We investigate
the effect of τ in Section V-B. Since, in our implementation,
the above methods are all used within the same dual decom-
position algorithm template (Algorithm 1), we can be sure that
any difference between these methods is due to the way we
solve the restricted problem and not due to other design choices
or implementation details.

Convergence results. We compared the convergence of the
above methods with respect to the dual objective value (lower
is better) and test accuracy (higher is better). Results are given
in Fig. 1. With respect to dual objective value, methods that
solve the restricted problem exactly (Sort, Pivot) constantly
achieved the fastest convergence. On the other hand, methods
that solve the restricted problem approximately (Frank-Wolfe,
Bisection) were found to converge slowly. This is not surpris-
ing since, as we discussed in Section IV, the cost of computing
the partial gradient gi outweighs the cost of solving the
restricted problem. Therefore, it is worth solving the restricted
problem exactly. With respect to test accuracy, we found that
exact methods were the fastest on Amazon7/RCV1/News20
and comparable to approximate methods on Sector.

Training with only one or few passes. In a large-scale
setting, one can usually only afford to make few passes over the
training set, or sometimes even just one. In one-pass training,
training instances can be vectorized on the fly (e.g., using
the hashing trick [21]) and released from memory as soon as
the model has been updated. Dual decomposition methods are
ideal candidates in this setting, since they can be used online:
at any given time, dual decomposition methods only require
access to a single training instance xi. Table II indicates our
results in such a low-computational budget setting: 1, 3, 5
passes over the training data. We found that methods that solve
the restricted problem exactly (Sort, Pivot) constantly achieved
the best accuracy. For example, on News20, Sort and Pivot
achieved 83.51% and 83.85% accuracy in one pass, respec-
tively, while SMO and Frank-Wolfe only achieved 82.55% and
81.23%. This is not surprising, since SMO and Frank-Wolfe
solve the restricted problem only partially. Our experimental
results therefore indicate that solving the restricted problem
exactly is beneficial during the first few passes.

In terms of training time, our results confirm that solving
the restricted problem exactly is not more computationally
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Fig. 1: Convergence of proposed and existing methods with
respect to test accuracy and dual objective function. Rel-
ative objective value difference is computed by |f(α) −
f(α∗)|/|f(α∗)|, where α∗ is obtained by solving the problem
very accurately.

expensive than other methods. For example, on Amazon7, it
took 5.98 and 6.01 seconds to Sort and Pivot for making one
pass over the training data, while SMO and Frank-Wolfe took
6.06 and 5.97 seconds, respectively.

Scalability with respect to the number of classes. To
investigate the effect of the number of classes k on training
time, we used the News20 and Sector datasets and created
samples containing a subset of the classes. The samples
contained 5, 6, . . . , 20 classes for News20 and 10, 15 . . . , 105
classes for Sector. Since our goal was to measure the impact
of the number of classes and not of the number of training
instances, we used the same number of training instances in



TABLE II: Method comparison for 1, 3 and 5 passes over the training data. Time is in seconds. Accuracy is w.r.t. the test set.

Dataset Passes Sort Pivot Bisec SMO FW

Amazon7

1 Acc 93.49 ± 0.51 93.41 ± 0.78 92.95 ± 0.78 92.62 ± 1.07 93.19 ± 0.66
Time 5.98 ± 0.02 6.01 ± 0.03 6.17 ± 0.02 6.06 ± 0.02 5.97 ± 0.02

3 Acc 94.49 ± 0.64 94.47 ± 0.43 94.47 ± 0.46 94.29 ± 0.52 94.36 ± 0.51
Time 17.13 ± 0.04 17.19 ± 0.07 17.77 ± 0.03 17.39 ± 0.03 16.94 ± 0.03

5 Acc 94.81 ± 0.33 94.87 ± 0.14 94.78 ± 0.24 94.81 ± 0.44 94.85 ± 0.18
Time 28.16 ± 0.08 28.30 ± 0.06 29.14 ± 0.07 28.62 ± 0.07 28.01 ± 0.04

RCV1

1 Acc 91.91 ± 0.14 91.90 ± 0.11 91.86 ± 0.09 91.80 ± 0.09 91.66 ± 0.10
Time 8.96 ± 0.01 8.83 ± 0.02 9.15 ± 0.02 8.86 ± 0.03 8.71 ± 0.05

3 Acc 92.82 ± 0.04 92.84 ± 0.04 92.82 ± 0.03 92.81 ± 0.03 92.74 ± 0.04
Time 25.90 ± 0.03 25.73 ± 0.05 26.40 ± 0.06 25.75 ± 0.04 25.17 ± 0.07

5 Acc 92.90 ± 0.03 92.90 ± 0.03 92.89 ± 0.04 92.89 ± 0.05 92.87 ± 0.03
Time 42.99 ± 0.11 42.45 ± 0.08 43.40 ± 0.08 42.97 ± 0.15 41.63 ± 0.07

News20

1 Acc 83.51 ± 1.04 83.85 ± 0.87 83.10 ± 0.76 82.55 ± 1.38 81.23 ± 1.89
Time 0.33 ± 0.03 0.31 ± 0.01 0.31 ± 0.01 0.31 ± 0.01 0.27 ± 0.01

3 Acc 89.20 ± 0.35 89.12 ± 0.39 89.10 ± 0.47 88.87 ± 0.50 88.01 ± 0.42
Time 0.91 ± 0.01 0.90 ± 0.01 0.94 ± 0.01 0.96 ± 0.01 0.80 ± 0.01

5 Acc 89.83 ± 0.21 89.87 ± 0.24 89.81 ± 0.23 89.63 ± 0.13 89.14 ± 0.51
Time 1.48 ± 0.01 1.47 ± 0.01 1.57 ± 0.01 1.52 ± 0.01 1.41 ± 0.01

Sector

1 Acc 94.17 ± 0.27 93.96 ± 0.36 94.08 ± 0.30 93.52 ± 0.41 93.57 ± 0.37
Time 0.58 ± 0.01 0.56 ± 0.01 0.59 ± 0.01 0.56 ± 0.01 0.48 ± 0.01

3 Acc 94.98 ± 0.24 95.06 ± 0.28 95.02 ± 0.27 94.78 ± 0.23 94.74 ± 0.17
Time 1.69 ± 0.01 1.64 ± 0.01 1.71 ± 0.01 1.67 ± 0.01 1.40 ± 0.01

5 Acc 95.10 ± 0.27 95.07 ± 0.26 95.06 ± 0.26 94.98 ± 0.22 94.95 ± 0.18
Time 2.82 ± 0.02 2.69 ± 0.06 2.81 ± 0.01 2.78 ± 0.01 2.32 ± 0.02

all samples, which was 5690 for News20 and 1049 for Sector.
Results are given in Fig. 2. While all methods scale roughly
linearly with respect to k, we found that exact methods scaled
very well, even on datasets with a large number of classes such
as Sector.
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Fig. 2: Impact of the number of classes on training time.

B. Solving the restricted problem exactly vs. approximately

Previous works (e.g., [3], [5]) usually picked one way of
solving the restricted problem and did not compare with others.
Therefore, it is not clear yet whether it is more advantageous
to solve the restricted problem exactly or approximately. To
answer this question, we compared exact methods (Sort, Pivot)
to bisection. As indicated in Algorithm 3, bisection requires
a tolerance parameter τ for its stopping criterion. Choosing
τ is a matter of trade-off: the smaller τ , the more accurately
we solve the restricted problem but also the more iterations
it takes. In our experiments, we ran bisection with different
tolerance values: τ = 10r where r = −5 (very strict), r = −4,
. . . , r = −1 (very loose).

In a first experiment, we compared exact methods and
bisection in terms of convergence. Results are indicated in

Fig. 3. With respect to the dual objective value, exact methods
constantly outperformed bisection, even with r = −5 (very
strict). With respect to test accuracy, our results indicate that
setting the tolerance parameter too loose (r ≥ −2) results in
slower convergence and worse accuracy than exact methods.
We found that the difference between the Sort and Pivot
algorithms was usually small. This is due to the fact that
the O(k) complexity of Pivot is in expectation whereas the
O(k log k) complexity of Sort is in worst case. We expect the
Pivot method to be more beneficial when k is very large.

In a second experiment, we compared exact methods and
bisection in terms of their robustness with respect to the
regularization parameter C. Results are indicated in Fig. 4. Our
results show that as C gets larger (less regularized), loosely
solving the restricted problem results in poorer and poorer
accuracy. Therefore, the larger C (the less regularized) the
more important it becomes to solve the restricted problem
accurately or exactly. However, bisection typically becomes
slower than exact methods when r ≤ −2. Therefore, we find
that exact methods are the most cost-effective: they both find
an exact solution and are computationally cheap.

VI. CONCLUSION

We presented a method for training multiclass SVMs by
Euclidean projection onto the positive simplex. Our method
allows to solve dual decomposition’s restricted problem exactly
in expected O(k) time. We demonstrated on several large-scale
high-dimensional datasets that solving the restricted problem
exactly i) achieves state-of-the-art convergence ii) outperforms
approximate methods for one-pass or few-pass training iii)
scales well with respect to the number of classes.
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Fig. 3: Convergence of exact methods (Sort, Pivot) and bisec-
tion with tolerance parameter τ = 10r, where r = −5 (very
strict), r = −4, . . . , r = −1 (very loose).
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Fig. 4: Comparison between exact methods (Sort, Pivot) and
bisection when varying the regularization parameter C on the
News20 dataset. For bisection, we set the tolerance parameter
of the stopping criterion to τ = 10r.
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Supplementary material
We briefly present how to implement the SMO and Frank-Wolfe methods below.

A. Sequential Minimal Optimization (SMO)

Sequential Minimal Optimization (SMO) was used to solve the restricted problem in Eq. (6) in LaRank [10]. Suppose that
we choose two coordinates p ∈ [k] and q ∈ [k] \ {p}. The main idea of SMO is that we can maintain feasibility with respect to
the equality constraint

∑k
m=1 α

m
i = 0 if we update αpi and αqi by αpi ← αpi + λ and αqi ← αqi − λ, respectively. Note that this

is equivalent to setting δi in Eq. (6) to [0, 0, . . . , λ︸︷︷︸
p

, . . . , −λ︸︷︷︸
q

, . . . , 0, 0]T. In that case, Eq. (6) simplifies to

minimize
λ

‖xi‖2λ2 + (gpi − g
q
i )λ

subject to αqi − C
q
i ≤ λ ≤ C

p
i − α

p
i .

This is a univariate quadratic objective with a box-constraint. Therefore, the optimal solution is obtained by solving the
unconstrained problem followed by a projection to the box:

λ = min
(

max
(gqi − gpi

2‖xi‖2
, αqi − C

q
i

)
, Cpi − α

p
i

)
.

We then maintain wp and wq by wp ← wp + λxi and wq ← wq − λxi, respectively. Motivated by Eq. (5) and following [5],
we choose p = argmax

m∈[k]
gmi and q ∈ {m : αmi < Cmi } cyclically.

B. Frank-Wolfe method

Recently, [12] proposed a block Frank-Wolfe algorithm for structured SVMs. The main idea of the Frank-Wolfe method is
to solve a constrained linear approximation of the objective function. In our notation, this leads to the following sub-problem:

minimize
s

gTi s

subject to s ≤ Ci

sT1 = 0.

Then, we can update αi by αi ← αi + γ(s−αi) or equivalently αi ← (1− γ)αi + γs, where γ ∈ [0, 1]. The optimal solution
to this problem (different from [12] because they use a different dual formulation) is s = Ci − Cej = C(eyi − ej) where

j = argmax
m∈[k]

gmi = argmax
m∈[k]

wT
mxi + ∆m

i

In other words, s = 0 if j = yi, otherwise s is zero everywhere except in the yth
i position where it is C and in the jth position

where it is −C. Recall that for an update of the form αi ← αi + δi, we need to solve Eq. (6). To find γ, we can therefore
inject δi = γ(s−αi) in the objective of Eq. (6), which leads to the following optimization problem:

minimize
γ∈[0,1]

‖xi‖2

2
γ2||s−αi||2 + γ gTi (s−αi). (8)

The constraint γ ∈ [0, 1] ensures that the constraints of the dual objective will be satisfied. The problem in Eq. (8) is a univariate
one and has a simple closed-form solution:

γ = min
(

max
( gTi (αi − s)
‖xi‖2‖s−αi‖2

, 0
)
, 1
)
.


