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Abstract

We propose in this paper a differentiable learning

loss between time series, building upon the cel-

ebrated dynamic time warping (DTW) discrep-

ancy. Unlike the Euclidean distance, DTW can

compare time series of variable size and is ro-

bust to shifts or dilatations across the time di-

mension. To compute DTW, one typically solves

a minimal-cost alignment problem between two

time series using dynamic programming. Our

work takes advantage of a smoothed formula-

tion of DTW, called soft-DTW, that computes the

soft-minimum of all alignment costs. We show

in this paper that soft-DTW is a differentiable

loss function, and that both its value and gradi-

ent can be computed with quadratic time/space

complexity (DTW has quadratic time but linear

space complexity). We show that this regular-

ization is particularly well suited to average and

cluster time series under the DTW geometry, a

task for which our proposal significantly outper-

forms existing baselines (Petitjean et al., 2011).

Next, we propose to tune the parameters of a ma-

chine that outputs time series by minimizing its

fit with ground-truth labels in a soft-DTW sense.

1. Introduction

The goal of supervised learning is to learn a mapping that

links an input to an output objects, using examples of such

pairs. This task is noticeably more difficult when the out-

put objects have a structure, i.e. when they are not vec-

tors (Bakir et al., 2007). We study here the case where each

output object is a time series, namely a family of observa-

tions indexed by time. While it is tempting to treat time

as yet another feature, and handle time series of vectors

as the concatenation of all these vectors, several practical
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Figure 1. Given the first part of a time series, we trained two

multi-layer perceptron (MLP) to predict the entire second part.

Using the ShapesAll dataset, we used a Euclidean loss for the first

MLP and the soft-DTW loss proposed in this paper for the second

one. We display above the prediction obtained for a given test

instance with either of these two MLPs in addition to the ground

truth. Oftentimes, we observe that the soft-DTW loss enables us

to better predict sharp changes. More time series predictions are

given in Appendix F.

issues arise when taking this simplistic approach: Time-

indexed phenomena can often be stretched in some areas

along the time axis (a word uttered in a slightly slower pace

than usual) with no impact on their characteristics; varying

sampling conditions may mean they have different lengths;

time series may not synchronized.

The DTW paradigm. Generative models for time series

are usually built having the invariances above in mind:

Such properties are typically handled through latent vari-

ables and/or Markovian assumptions (Lütkepohl, 2005,

Part I,§18). A simpler approach, motivated by geometry,

lies in the direct definition of a discrepancy between time

series that encodes these invariances, such as the Dynamic

Time Warping (DTW) score (Sakoe & Chiba, 1971; 1978).

DTW computes the best possible alignment between two

time series (the optimal alignment itself can also be of in-

terest, see e.g. Garreau et al. 2014) of respective length n
and m by computing first the n×m pairwise distance ma-

trix between these points to solve then a dynamic program

(DP) using Bellman’s recursion with a quadratic (nm) cost.

The DTW geometry. Because it encodes efficiently a use-

ful class of invariances, DTW has often been used in a dis-

criminative framework (with a k-NN or SVM classifier) to

predict a real or a class label output, and engineered to run
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faster in that context (Yi et al., 1998). Recent works by

Petitjean et al. (2011); Petitjean & Gançarski (2012) have,

however, shown that DTW can be used for more innova-

tive tasks, such as time series averaging using the DTW

discrepancy (see Schultz & Jain 2017 for a gentle introduc-

tion to these ideas). More generally, the idea of synthetis-

ing time series centroids can be regarded as a first attempt

to output entire time series using DTW as a fitting loss.

From a computational perspective, these approaches are,

however, hampered by the fact that DTW is not differen-

tiable and unstable when used in an optimization pipeline.

Soft-DTW. In parallel to these developments, several au-

thors have considered smoothed modifications of Bell-

man’s recursion to define smoothed DP distances (Bahl &

Jelinek, 1975; Ristad & Yianilos, 1998) or kernels (Saigo

et al., 2004; Cuturi et al., 2007). When applied to the

DTW discrepancy, that regularization results in a soft-DTW

score, which considers the soft-minimum of the distribution

of all costs spanned by all possible alignments between

two time series. Despite considering all alignments and

not just the optimal one, soft-DTW can be computed with

a minor modification of Bellman’s recursion, in which all

(min,+) operations are replaced with (+,×). As a result,

both DTW and soft-DTW have quadratic in time & linear

in space complexity with respect to the sequences’ lengths.

Because soft-DTW can be used with kernel machines, one

typically observes an increase in performance when using

soft-DTW over DTW (Cuturi, 2011) for classification.

Our contributions. We explore in this paper another

important benefit of smoothing DTW: unlike the original

DTW discrepancy, soft-DTW is differentiable in all of its

arguments. We show that the gradients of soft-DTW w.r.t

to all of its variables can be computed as a by-product of

the computation of the discrepancy itself, with an added

quadratic storage cost. We use this fact to propose an al-

ternative approach to the DBA (DTW Barycenter Averag-

ing) clustering algorithm of (Petitjean et al., 2011), and

observe that our smoothed approach significantly outper-

forms known baselines for that task. More generally, we

propose to use soft-DTW as a fitting term to compare the

output of a machine synthesizing a time series segment

with a ground truth observation, in the same way that, for

instance, a regularized Wasserstein distance was used to

compute barycenters (Cuturi & Doucet, 2014), and later

to fit discriminators that output histograms (Zhang et al.,

2015; Rolet et al., 2016). When paired with a flexible

learning architecture such as a neural network, soft-DTW

allows for a differentiable end-to-end approach to design

predictive and generative models for time series, as illus-

trated in Figure 1. Source code is available at https:

//github.com/mblondel/soft-dtw.

Structure. After providing background material, we show

in §2 how soft-DTW can be differentiated w.r.t the locations

of two time series. We follow in §3 by illustrating how

these results can be directly used for tasks that require to

output time series: averaging, clustering and prediction of

time series. We close this paper with experimental results

in §4 that showcase each of these potential applications.

Notations. We consider in what follows multivariate dis-

crete time series of varying length taking values in Ω ⊂ R
p.

A time series can be thus represented as a matrix of p lines

and varying number of columns. We consider a differen-

tiable substitution-cost function δ : Rp × R
p → R+ which

will be, in most cases, the quadratic Euclidean distance be-

tween two vectors. For an integer n we write JnK for the set

{1, . . . , n} of integers. Given two series’ lengths n and m,

we write An,m ⊂ {0, 1}n×m for the set of (binary) align-

ment matrices, that is paths on a n×m matrix that connect

the upper-left (1, 1) matrix entry to the lower-right (n,m)
one using only ↓,→,ց moves. The cardinal of An,m is

known as the delannoy(n−1,m−1) number; that number

grows exponentially with m and n.

2. The DTW and soft-DTW loss functions

We propose in this section a unified formulation for the

original DTW discrepancy (Sakoe & Chiba, 1978) and

the Global Alignment kernel (GAK) (Cuturi et al., 2007),

which can be both used to compare two time series x =
(x1, . . . , xn) ∈ R

p×n and y = (y1, . . . , ym) ∈ R
p×m.

2.1. Alignment costs: optimality and sum

Given the cost matrix ∆(x,y) :=
[
δ(xi, yj)

]

ij
∈ R

n×m,

the inner product 〈A,∆(x,y) 〉 of that matrix with an align-

ment matrix A in An,m gives the score of A, as illustrated

in Figure 2. Both DTW and GAK consider the costs of all

possible alignment matrices, yet do so differently:

DTW(x,y) := min
A∈An,m

〈A,∆(x,y) 〉,

kγGA(x,y) :=
∑

A∈An,m

e−〈A,∆(x,y) 〉/γ .
(1)

DP Recursion. Sakoe & Chiba (1978) showed that the

Bellman equation (1952) can be used to compute DTW.

That recursion, which appears in line 5 of Algorithm 1 (dis-

regarding for now the exponent γ), only involves (min,+)
operations. When considering kernel kγGA and, instead, its

integration over all alignments (see e.g. Lasserre 2009),

Cuturi et al. (2007, Theorem 2) and the highly related for-

mulation of Saigo et al. (2004, p.1685) use an old algo-

rithmic appraoch (Bahl & Jelinek, 1975) which consists

in (i) replacing all costs by their neg-exponential; (ii) re-

place (min,+) operations with (+,×) operations. These

two recursions can be in fact unified with the use of a soft-

https://github.com/mblondel/soft-dtw
https://github.com/mblondel/soft-dtw
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y1 y2 y3 y4 y5 y6

x1

x2

x3

x4

δ1,1 δ1,2 δ1,3 δ1,4 δ1,5 δ1,6

δ2,1 δ2,2 δ2,3 δ2,4 δ2,5 δ2,6

δ3,1 δ3,2 δ3,3 δ3,4 δ3,5 δ3,6

δ4,1 δ4,2 δ4,3 δ4,4 δ4,5 δ4,6

Figure 2. Three alignment matrices (orange, green, purple, in ad-

dition to the top-left and bottom-right entries) between two time

series of length 4 and 6. The cost of an alignment is equal to the

sum of entries visited along the path. DTW only considers the

optimal alignment (here depicted in purple pentagons), whereas

soft-DTW considers all delannoy(n − 1,m − 1) possible align-

ment matrices.

minimum operator, which we present below.

Unified algorithm Both formulas in Eq. (1) can be com-

puted with a single algorithm. That formulation is new to

our knowledge. Consider the following generalized min
operator, with a smoothing parameter γ ≥ 0:

minγ{a1, . . . , an} :=

{

mini≤n ai, γ = 0,

−γ log
∑n

i=1 e
−ai/γ , γ > 0.

With that operator, we can define γ-soft-DTW:

dtwγ(x,y) := minγ{〈A,∆(x,y) 〉, A ∈ An,m}.

The original DTW score is recovered by setting γ to 0.

When γ > 0, we recover dtwγ = −γ log kγGA. Most

importantly, and in either case, dtwγ can be computed

using Algorithm 1, which requires (nm) operations and

(nm) storage cost as well . That cost can be reduced to

2n with a more careful implementation if one only seeks

to compute dtwγ(x,y), but the backward pass we con-

sider next requires the entire matrix R of intermediary

alignment costs. Note that, to ensure numerical stabil-

ity, the operator minγ must be computed using the usual

log-sum-exp stabilization trick, namely that log
∑

i e
zi =

(maxj zj) + log
∑

i e
zi−maxj zj .

2.2. Differentiation of soft-DTW

A small variation in the input x causes a small change

in dtw0(x,y) or dtwγ(x,y). When considering dtw0,

that change can be efficiently monitored only when the

optimal alignment matrix A⋆ that arises when computing

dtw0(x,y) in Eq. (1) is unique. As the minimum over a

finite set of linear functions of ∆, dtw0 is therefore locally

differentiable w.r.t. the cost matrix ∆, with gradient A⋆,

a fact that has been exploited in all algorithms designed to

Algorithm 1 Forward recursion to compute dtwγ(x,y)
and intermediate alignment costs

1: Inputs: x,y, smoothing γ ≥ 0, distance function δ
2: r0,0 = 0; ri,0 = r0,j = ∞; i ∈ JnK, j ∈ JmK
3: for j = 1, . . . ,m do

4: for i = 1, . . . , n do

5: ri,j = δ(xi, yj) +minγ{ri−1,j−1, ri−1,j , ri,j−1}
6: end for

7: end for

8: Output: (rn,m, R)

average time series under the DTW metric (Petitjean et al.,

2011; Schultz & Jain, 2017). To recover the gradient of

dtw0(x,y) w.r.t. x, we only need to apply the chain rule,

thanks to the differentiability of the cost function:

∇xdtw0(x,y) =

(
∂∆(x,y)

∂x

)T

A⋆, (2)

where ∂∆(x,y)/∂x is the Jacobian of ∆ w.r.t. x, a linear

map from R
p×n to R

n×m. When δ is the squared Euclidean

distance, the transpose of that Jacobian applied to a matrix

B ∈ R
n×m is (◦ being the elementwise product):

(∂∆(x,y)/∂x)TB = 2
(
(1p1

T
mBT ) ◦ x− yBT

)
.

With continuous data, A⋆ is almost always likely to be

unique, and therefore the gradient in Eq. (2) will be de-

fined almost everywhere. However, that gradient, when it

exists, will be discontinuous around those values x where

a small change in x causes a change in A⋆, which is likely

to hamper the performance of gradient descent methods.

The case γ > 0. An immediate advantage of soft-DTW

is that it can be explicitly differentiated, a fact that was also

noticed by Saigo et al. (2006) in the related case of edit

distances. When γ > 0, the gradient of Eq. (1) is obtained

via the chain rule,

∇x dtwγ(x,y) =

(
∂∆(x,y)

∂x

)T

Eγ [A], (3)

where Eγ [A] :=
1

kγGA(x,y)

∑

A∈An,m

e−〈A,∆(x,y)/γ 〉A,

is the average alignment matrix A under the Gibbs distri-

bution pγ ∝ e−〈A,∆(x,y) 〉/γ defined on all alignments in

An,m. The kernel kγGA(x,y) can thus be interpreted as

the normalization constant of pγ . Of course, since An,m

has exponential size in n and m, a naive summation is not

tractable. Although a Bellman recursion to compute that

average alignment matrix Eγ [A] exists (see Appendix A)

that computation has quartic (n2m2) complexity. Note that
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this stands in stark contrast to the quadratic complexity ob-

tained by Saigo et al. (2006) for edit-distances, which is due

to the fact the sequences they consider can only take values

in a finite alphabet. To compute the gradient of soft-DTW,

we propose instead an algorithm that manages to remain

quadratic (nm) in terms of complexity. The key to achieve

this reduction is to apply the chain rule in reverse order of

Bellman’s recursion given in Algorithm 1, namely back-

propagate. A similar idea was recently used to compute the

gradient of ANOVA kernels in (Blondel et al., 2016).

2.3. Algorithmic differentiation

Differentiating algorithmically dtwγ(x,y) requires doing

first a forward pass of Bellman’s equation to store all in-

termediary computations and recover R = [ri,j ] when

running Algorithm 1. The value of dtwγ(x,y)—stored

in rn,m at the end of the forward recursion—is then im-

pacted by a change in ri,j exclusively through the terms

in which ri,j plays a role, namely the triplet of terms

ri+1,j , ri,j+1, ri+1,j+1. A straightforward application of

the chain rule then gives

∂rn,m

∂ri,j
︸ ︷︷ ︸
ei,j

=
∂rn,m

∂ri+1,j
︸ ︷︷ ︸
ei+1,j

∂ri+1,j

∂ri,j
+

∂rn,m

∂ri,j+1
︸ ︷︷ ︸
ei,j+1

∂ri,j+1

∂ri,j
+

∂rn,m

∂ri+1,j+1
︸ ︷︷ ︸
ei+1,j+1

∂ri+1,j+1

∂ri,j
,

in which we have defined the notation of the main object

of interest of the backward recursion: ei,j :=
∂rn,m

∂ri,j
. The

Bellman recursion evaluated at (i+1, j) as shown in line 5

of Algorithm 1 (here δi+1,j is δ(xi+1, yj)) yields :

ri+1,j = δi+1,j +minγ{ri,j−1, ri,j , ri+1,j−1},

which, when differentiated w.r.t ri,j yields the ratio:

∂ri+1,j

∂ri,j
= e−ri,j/γ/

(

e−ri,j−1/γ + e−ri,j/γ + e−ri+1,j−1/γ
)

.

The logarithm of that derivative can be conveniently cast

using evaluations of minγ computed in the forward loop:

γ log
∂ri+1,j

∂ri,j
= minγ{ri,j−1, ri,j , ri+1,j−1} − ri,j

= ri+1,j − δi+1,j − ri,j .

Similarly, the following relationships can also be obtained:

γ log
∂ri,j+1

∂ri,j
= ri,j+1 − ri,j − δi,j+1,

γ log
∂ri+1,j+1

∂ri,j
= ri+1,j+1 − ri,j − δi+1,j+1.

We have therefore obtained a backward recursion to com-

pute the entire matrix E = [ei,j ], starting from en,m =
∂rn,m

∂rn,m
= 1 down to e1,1. To obtain ∇x dtwγ(x,y), notice

that the derivatives w.r.t. the entries of the cost matrix ∆
can be computed by

∂rn,m

∂δi,j
=

∂rn,m

∂ri,j

∂ri,j
∂δi,j

= ei,j · 1 = ei,j ,

and therefore we have that

∇x dtwγ(x,y) =

(
∂∆(x,y)

∂x

)T

E,

where E is exactly the average alignment Eγ [A] in

Eq. (3). These computations are summarized in Algo-

rithm 2, which, once ∆ has been computed, has complexity

nm in time and space. Because minγ has a 1/γ-Lipschitz

continuous gradient, the gradient of dtwγ is 2/γ-Lipschitz

continuous when δ is the squared Euclidean distance.

Algorithm 2 Backward recursion to compute ∇x dtwγ(x,y)

1: Inputs: x,y, smoothing γ ≥ 0, distance function δ
2: (·, R) = dtwγ(x,y), ∆ = [δ(xi, yj)]i,j
3: δi,m+1 = δn+1,j = 0, i ∈ JnK, j ∈ JmK
4: ei,m+1 = en+1,j = 0, i ∈ JnK, j ∈ JmK
5: ri,m+1 = rn+1,j = −∞, i ∈ JnK, j ∈ JmK
6: δn+1,m+1 = 0, en+1,m+1 = 1, rn+1,m+1 = rn,m
7: for j = m, . . . , 1 do

8: for i = n, . . . , 1 do

9: a = exp 1
γ (ri+1,j − ri,j − δi+1,j)

10: b = exp 1
γ (ri,j+1 − ri,j − δi,j+1)

11: c = exp 1
γ (ri+1,j+1 − ri,j − δi+1,j+1)

12: ei,j = ei+1,j · a+ ei,j+1 · b+ ei+1,j+1 · c
13: end for

14: end for

15: Output: ∇x dtwγ(x,y) =
(

∂∆(x,y)
∂x

)T

E

3. Learning with the soft-DTW loss

3.1. Averaging with the soft-DTW geometry

We study in this section a direct application of Algorithm 2

to the problem of computing Fréchet means (1948) of time

series with respect to the dtwγ discrepancy. Given a

family of N times series y1, . . . ,yN , namely N matrices

of p lines and varying number of columns, m1, . . . ,mN ,

we are interested in defining a single barycenter time se-

ries x for that family under a set of normalized weights

λ1, . . . , λN ∈ R+ such that
∑N

i=1 λi = 1. Our goal is thus

to solve approximately the following problem, in which we

have assumed that x has fixed length n:

min
x∈Rp×n

N∑

i=1

λi

mi
dtwγ(x,yi). (4)

Note that each dtwγ(x,yi) term is divided by mi, the

length of yi. Indeed, since dtw0 is an increasing (roughly

linearly) function of each of the input lengths n and mi, we

follow the convention of normalizing in practice each dis-

crepancy by n ×mi. Since the length n of x is here fixed

across all evaluations, we do not need to divide the objec-

tive of Eq. (4) by n. Averaging under the soft-DTW geom-

etry results in substantially different results than those that

can be obtained with the Euclidean geometry (which can

only be used in the case where all lengths n = m1 = · · · =
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δi,j

δi+1,j

δi,j+1

δi+1,j+1

ri−1,j−1 ri−1,j ri−1,j+1

ri,j−1 ri,j ri,j+1

ri+1,j−1 ri+1,j ri+1,j+1

e
1
γ
(ri+1,j−ri,j−δi+1,j) e

1
γ
(ri+1,j+1−ri,j−δi+1,j+1)

e
1
γ
(ri,j+1−ri,j−δi,j+1)ei,j

ei+1,j ei+1,j+1

ei,j+1

Figure 3. Sketch of the computational graph for soft-DTW, in the forward pass used to compute dtwγ (left) and backward pass used to

compute its gradient ∇x dtwγ (right). In both diagrams, purple shaded cells stand for data values available before the recursion starts,

namely cost values (left) and multipliers computed using forward pass results (right). In the left diagram, the forward computation of

ri,j as a function of its predecessors and δi,j is summarized with arrows. Dotted lines indicate a minγ operation, solid lines an addition.

From the perspective of the final term rn,m, which stores dtwγ(x,y) at the lower right corner (not shown) of the computational graph,

a change in ri,j only impacts rn,m through changes that ri,j causes to ri+1,j , ri,j+1 and ri+1,j+1. These changes can be tracked using

Eq. (2.3,2.3) and appear in lines 9-11 in Algorithm 2 as variables a, b, c, as well as in the purple shaded boxes in the backward pass

(right) which represents the recursion of line 12 in Algorithm 2.

mN are equal), as can be seen in the intuitive interpolations

we obtain between two time series shown in Figure 4.

Non-convexity of dtwγ . A natural question that arises

from Eq. (4) is whether that objective is convex or not. The

answer is negative, in a way that echoes the non-convexity

of the k-means objective as a function of cluster centroids

locations. Indeed, for any alignment matrix A of suitable

size, each map x 7→ 〈A,∆(x,y) 〉 shares the same convex-

ity/concavity property that δ may have. However, both min
and minγ can only preserve the concavity of elementary

functions (Boyd & Vandenberghe, 2004, pp.72-74). There-

fore dtwγ will only be concave if δ is concave, or become

instead a (non-convex) (soft) minimum of convex functions

if δ is convex. When δ is a squared-Euclidean distance,

dtw0 is a piecewise quadratic function of x, as is also the

case with the k-means energy (see for instance Figure 2

in Schultz & Jain 2017). Since this is the setting we con-

sider here, all of the computations involving barycenters

should be taken with a grain of salt, since we have no way

of ensuring optimality when approximating Eq. (4).

Smoothing helps optimizing dtwγ . Smoothing can be

regarded, however, as a way to “convexify” dtwγ . In-

deed, notice that dtwγ converges to the sum of all costs

as γ → ∞. Therefore, if δ is convex, dtwγ will gradually

become convex as γ grows. For smaller values of γ, one

can intuitively foresee that using minγ instead of a mini-

mum will smooth out local minima and therefore provide a

better (although slightly different from dtw0) optimization

landscape. We believe this is why our approach recovers

better results, even when measured in the original dtw0

discrepancy, than subgradient or alternating minimization

approaches such as DBA (Petitjean et al., 2011), which can,

on the contrary, get more easily stuck in local minima. Ev-

idence for this statement is presented in the experimental

section.

(a) Euclidean loss (b) Soft-DTW loss (γ = 1)

Figure 4. Interpolation between two time series (red and blue) on

the Gun Point dataset. We computed the barycenter by solving Eq.

(4) with (λ1, λ2) set to (0.25, 0.75), (0.5, 0.5) and (0.75, 0.25).

The soft-DTW geometry leads to visibly different interpolations.

3.2. Clustering with the soft-DTW geometry

The (approximate) computation of dtwγ barycenters can

be seen as a first step towards the task of clustering time

series under the dtwγ discrepancy. Indeed, one can nat-

urally formulate that problem as that of finding centroids

x1, . . . ,xk that minimize the following energy:

min
x1,...,xk∈Rp×n

N∑

i=1

1

mi
min
j∈[[k]]

dtwγ(xj ,yi). (5)

To solve that problem one can resort to a direct generaliza-

tion of Lloyd’s algorithm (1982) in which each centering

step and each clustering allocation step is done according

to the dtwγ discrepancy.

3.3. Learning prototypes for time series classification

One of the de-facto baselines for learning to classify time

series is the k nearest neighbors (k-NN) algorithm, com-

bined with DTW as discrepancy measure between time se-

ries. However, k-NN has two main drawbacks. First, the

time series used for training must be stored, leading to

potentially high storage cost. Second, in order to com-
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pute predictions on new time series, the DTW discrep-

ancy must be computed with all training time series, lead-

ing to high computational cost. Both of these drawbacks

can be addressed by the nearest centroid classifier (Hastie

et al., 2001, p.670), (Tibshirani et al., 2002). This method

chooses the class whose barycenter (centroid) is closest

to the time series to classify. Although very simple, this

method was shown to be competitive with k-NN, while re-

quiring much lower computational cost at prediction time

(Petitjean et al., 2014). Soft-DTW can naturally be used

in a nearest centroid classifier, in order to compute the

barycenter of each class at train time, and to compute the

discrepancy between barycenters and time series, at predic-

tion time.

3.4. Multistep-ahead prediction

Soft-DTW is ideally suited as a loss function for any task

that requires time series outputs. As an example of such a

task, we consider the problem of, given the first 1, . . . , t
observations of a time series, predicting the remaining

(t + 1), . . . , n observations. Let xt,t′ ∈ R
p×(t′−t+1) be

the submatrix of x ∈ R
p×n of all columns with indices be-

tween t and t′, where 1 ≤ t < t′ < n. Learning to predict

the segment of a time series can be cast as the problem

min
θ∈Θ

N∑

i=1

dtwγ

(

fθ(x
1,t
i ),xt+1,n

i

)

,

where {fθ} is a set of parameterized function that take

as input a time series and outputs a time series. Natural

choices would be multi-layer perceptrons or recurrent neu-

ral networks (RNN), which have been historically trained

with a Euclidean loss (Parlos et al., 2000, Eq.5).

4. Experimental results

Throughout this section, we use the UCR (University

of California, Riverside) time series classification archive

(Chen et al., 2015). We use a subset containing 79 datasets

encompassing a wide variety of fields (astronomy, geology,

medical imaging) and lengths. Datasets include class infor-

mation (up to 60 classes) for each time series and are split

into train and test sets. Due to the large number of datasets

in the UCR archive, we choose to report only a summary

of our results in the main manuscript. Detailed results are

included in the appendices for interested readers.

4.1. Averaging experiments

In this section, we compare the soft-DTW barycenter ap-

proach presented in §3.1 to DBA (Petitjean et al., 2011)

and a simple batch subgradient method.

Experimental setup. For each dataset, we choose a class

at random, pick 10 time series in that class and compute

Table 1. Percentage of the datasets on which the proposed soft-

DTW barycenter is achieving lower DTW loss (Equation (4) with

γ = 0) than competing methods.

Random
initialization

Euclidean mean
initialization

Comparison with DBA

γ = 1 40.51% 3.80%

γ = 0.1 93.67% 46.83%

γ = 0.01 100% 79.75%

γ = 0.001 97.47% 89.87%

Comparison with subgradient method

γ = 1 96.20% 35.44%

γ = 0.1 97.47% 72.15%

γ = 0.01 97.47% 92.41%

γ = 0.001 97.47% 97.47%

their barycenter. For quantitative results below, we repeat

this procedure 10 times and report the averaged results. For

each method, we set the maximum number of iterations

to 100. To minimize the proposed soft-DTW barycenter

objective, Eq. (4), we use L-BFGS.

Qualitative results. We first visualize the barycenters ob-

tained by soft-DTW when γ = 1 and γ = 0.01, by DBA

and by the subgradient method. Figure 5 shows barycen-

ters obtained using random initialization on the ECG200

dataset. More results with both random and Euclidean

mean initialization are given in Appendix B and C.

We observe that both DBA or soft-DTW with low smooth-

ing parameter γ yield barycenters that are spurious. On

the other hand, a descent on the soft-DTW loss with suf-

ficiently high γ converges to a reasonable solution. For

example, as indicated in Figure 5 with DTW or soft-DTW

(γ = 0.01), the small kink around x = 15 is not repre-

sentative of any of the time series in the dataset. However,

with soft-DTW (γ = 1), the barycenter closely matches the

time series. This suggests that DTW or soft-DTW with too

low γ can get stuck in bad local minima.

When using Euclidean mean initialization (only possible if

time series have the same length), DTW or soft-DTW with

low γ often yield barycenters that better match the shape of

the time series. However, they tend to overfit: they absorb

the idiosyncrasies of the data. In contrast, soft-DTW is able

to learn barycenters that are much smoother.

Quantitative results. Table 1 summarizes the percentage

of datasets on which the proposed soft-DTW barycenter

achieves lower DTW loss when varying the smoothing pa-

rameter γ. The actual loss values achieved by different

methods are indicated in Appendix G and Appendix H.

As γ decreases, soft-DTW achieves a lower DTW loss than

other methods on almost all datasets. This confirms our
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Figure 5. Comparison between our proposed soft barycenter and

the barycenter obtained by DBA and the subgradient method,

on the ECG200 dataset. When DTW is insufficiently smoothed,

barycenters often get stuck in a bad local minimum that does not

correctly match the time series.

claim that the smoothness of soft-DTW leads to an objec-

tive that is better behaved and more amenable to optimiza-

tion by gradient-descent methods.

4.2. k-means clustering experiments

We consider in this section the same computational tools

used in §4.1 above, but use them to cluster time series.

Experimental setup. For all datasets, the number of clus-

ters k is equal to the number of classes available in the

dataset. Lloyd’s algorithm alternates between a centering

step (barycenter computation) and an assignment step. We

set the maximum number of outer iterations to 30 and the

maximum number of inner (barycenter) iterations to 100,

as before. Again, for soft-DTW, we use L-BFGS.

Qualitative results. Figure 6 shows the clusters obtained

when runing Lloyd’s algorithm on the CBF dataset with

soft-DTW (γ = 1) and DBA, in the case of random initial-

ization. More results are included in Appendix E. Clearly,

DTW absorbs the tiny details in the data, while soft-DTW

is able to learn much smoother barycenters.

Quantitative results. Table 2 summarizes the percentage

of datasets on which soft-DTW barycenter achieves lower

k-means loss under DTW, i.e. Eq. (5) with γ = 0. The

actual loss values achieved by all methods are indicated in

Appendix I and Appendix J. The results confirm the same

trend as for the barycenter experiments. Namely, as γ de-

creases, soft-DTW is able to achieve lower loss than other

methods on a large proportion of the datasets. Note that

we have not run experiments with smaller values of γ than

0.001, since dtw0.001 is very close to dtw0 in practice.

(a) Soft-DTW (γ = 1) (b) DBA

Figure 6. Clusters obtained on the CBF dataset when plugging our

proposed soft barycenter and that of DBA in Lloyd’s algorithm.

DBA absorbs the idiosyncrasies of the data, while soft-DTW can

learn much smoother barycenters.

4.3. Time-series classification experiments

In this section, we investigate whether the smoothing in

soft-DTW can act as a useful regularization and improve

classification accuracy in the nearest centroid classifier.

Experimental setup. We use 50% of the data for training,

25% for validation and 25% for testing. We choose γ from

15 log-spaced values between 10−3 and 10.

Quantitative results. Each point in Figure 7 above the di-

agonal line represents a dataset for which using soft-DTW

for barycenter computation rather than DBA improves the

accuracy of the nearest centroid classifier. To summarize,

we found that soft-DTW is working better or at least as well

as DBA in 75% of the datasets.

4.4. Multistep-ahead prediction experiments

In this section, we present preliminary experiments for the

task of multistep-ahead prediction, described in §3.4.

Experimental setup. We use the training and test sets pre-

defined in the UCR archive. In both the training and test

sets, we use the first 60% of the time series as input and the

remaining 40% as output, ignoring class information. We

then use the training set to learn a model that predicts the

outputs from inputs and the test set to evaluate results with

both Euclidean and DTW losses. In this experiment, we

focus on a simple multi-layer perceptron (MLP) with one
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Table 2. Percentage of the datasets on which the proposed soft-

DTW based k-means is achieving lower DTW loss (Equation (5)

with γ = 0) than competing methods.

Random
initialization

Euclidean mean
initialization

Comparison with DBA

γ = 1 15.78% 29.31%

γ = 0.1 24.56% 24.13%

γ = 0.01 59.64% 55.17%

γ = 0.001 77.19% 68.97%

Comparison with subgradient method

γ = 1 42.10% 46.44%

γ = 0.1 57.89% 50%

γ = 0.01 76.43% 65.52%

γ = 0.001 96.49% 84.48%

Figure 7. Each point above the diagonal represents a dataset

where using our soft-DTW barycenter rather than that of DBA

improves the accuracy of the nearest nearest centroid classifier.

This is the case for 75% of the datasets in the UCR archive.

hidden layer and sigmoid activation. We also experimented

with linear models and recurrent neural networks (RNNs)

but they did not improve over a simple MLP.

Implementation details. Deep learning frameworks such

as Theano, TensorFlow and Chainer allow the user to spec-

ify a custom backward pass for their function. Implement-

ing such a backward pass, rather than resorting to automatic

differentiation (autodiff), is particularly important in the

case of soft-DTW: First, the autodiff in these frameworks

is designed for vectorized operations, whereas the dynamic

program used by the forward pass of Algorithm 2 is inher-

ently element-wise; Second, as we explained in §2.2, our

backward pass is able to re-use log-sum-exp computations

from the forward pass, leading to both lower computational

cost and better numerical stability. We implemented a cus-

tom backward pass in Chainer, which can then be used to

plug soft-DTW as a loss function in any network architec-

ture. To estimate the MLP’s parameters, we used Chainer’s

implementation of Adam (Kingma & Ba, 2014).

Qualitative results. Visualizations of the predictions ob-

tained under Euclidean and soft-DTW losses are given in

Figure 1, as well as in Appendix F. We find that for sim-

Table 3. Averaged rank obtained by a multi-layer perceptron

(MLP) under Euclidean and soft-DTW losses. Euclidean initial-

ization means that we initialize the MLP trained with soft-DTW

loss by the solution of the MLP trained with Euclidean loss.

Training loss
Random

initialization
Euclidean

initialization

When evaluating with DTW loss

Euclidean 3.46 4.21

soft-DTW (γ = 1) 3.55 3.96

soft-DTW (γ = 0.1) 3.33 3.42

soft-DTW (γ = 0.01) 2.79 2.12

soft-DTW (γ = 0.001) 1.87 1.29

When evaluating with Euclidean loss

Euclidean 1.05 1.70

soft-DTW (γ = 1) 2.41 2.99

soft-DTW (γ = 0.1) 3.42 3.38

soft-DTW (γ = 0.01) 4.13 3.64

soft-DTW (γ = 0.001) 3.99 3.29

ple one-dimensional time series, an MLP works very well,

showing its ability to capture patterns in the training set.

Although the predictions under Euclidean and soft-DTW

losses often agree with each other, they can sometimes be

visibly different. Predictions under soft-DTW loss can con-

fidently predict abrupt and sharp changes since those have

a low DTW cost as long as such a sharp change is present,

under a small time shift, in the ground truth.

Quantitative results. A comparison summary of our

MLP under Euclidean and soft-DTW losses over the UCR

archive is given in Table 3. Detailed results are given in

the appendix. Unsurprisingly, we achieve lower DTW loss

when training with the soft-DTW loss, and lower Euclidean

loss when training with the Euclidean loss. Because DTW

is robust to several useful invariances, a small error in the

soft-DTW sense could be a more judicious choice than an

error in an Euclidean sense for many applications.

5. Conclusion

We propose in this paper to turn the popular DTW discrep-

ancy between time series into a full-fledged loss function

between ground truth time series and outputs from a learn-

ing machine. We have shown experimentally that, on the

existing problem of computing barycenters and clusters for

time series data, our computational approach is superior to

existing baselines. We have shown promising results on the

problem of multistep-ahead time series prediction, which

could prove extremely useful in settings where a user’s ac-

tual loss function for time series is closer to the robust per-

spective given by DTW, than to the local parsing of the

Euclidean distance.
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Appendix material

A. Recursive forward computation of the average path matrix

The average alignment under Gibbs distribution pγ can be computed with the following forward recurrence, which mimics

closely Bellman’s original recursion. For each i ∈ JnK, j ∈ JmK, define

Ei+1,j+1 =

[
e−δi+1,j+1/γEi,j 0i

0T
j e−ri+1,j+1/γ

]

+

[
e−δi+1,j+1/γEi,j+1

0T
j e−ri+1,j+1/γ

]

+

[

e−δi+1,j+1/γEi+1,j
0i

e−rij/γ

]

Here terms rij are computed following the recursion in Algorithm 2. Border matrices are initialized to 0, except for E1,1

which is initialized to [1]. Upon completion, the average alignment matrix is stored in En,m.

The operation above consists in summing three matrices of size (i + 1, j + 1). There are exactly (nm) such updates. A

careful implementation of this algorithm, that would only store two arrays of matrices, as Algorithm 1 only store two arrays

of values, can be carried out in nmmin(n,m) space but it would still require (nm)2 operations.
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B. Barycenters obtained with random initialization
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C. Barycenters obtained with Euclidean mean initialization
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D. More interpolation results

Left: results obtained under Euclidean loss. Right: results obtained under soft-DTW (γ = 1) loss.
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E. Clusters obtained by k-means under DTW or soft-DTW geometry

CBF dataset
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(a) Soft-DTW (γ = 1, random initialization)
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(b) Soft-DTW (γ = 1, Euclidean mean initialization)
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ECG200 dataset
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(a) Soft-DTW (γ = 1, random initialization)
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(b) Soft-DTW (γ = 1, Euclidean mean initialization)
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F. More visualizations of time-series prediction
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Soft-DTW: a Differentiable Loss Function for Time-Series

G. Barycenters: DTW loss (Eq. 4 with γ = 0) achieved with random init

Dataset Soft-DTW γ = 1 γ = 0.1 γ = 0.01 γ = 0.001 Subgradient method DBA Euclidean mean

50words 5.000 2.785 2.513 2.721 44.399 4.554 25.388
Adiac 0.235 0.207 0.257 0.428 25.533 0.754 0.177

ArrowHead 2.390 1.598 1.487 1.664 36.125 2.512 2.743
Beef 10.471 6.541 6.200 6.238 88.100 7.780 25.347

BeetleFly 35.790 23.655 22.559 23.105 77.993 25.122 191.574
BirdChicken 23.300 12.542 11.164 11.954 45.777 12.820 92.061

CBF 21.098 11.949 12.564 12.667 30.281 14.836 28.236
Car 2.639 1.750 1.611 1.914 80.437 2.609 5.106

ChlorineConcentration 22.260 13.932 14.818 15.044 32.134 16.168 15.411
CinC ECG torso 118.872 80.248 76.536 76.812 262.221 90.663 761.238

Coffee 1.036 0.871 1.262 1.630 41.741 2.380 0.591
Computers 231.421 182.380 178.184 179.886 ∞ 183.388 391.830
Cricket X 41.514 29.290 28.424 28.851 70.128 28.955 104.699
Cricket Y 51.858 30.321 30.337 31.041 70.989 33.098 107.712
Cricket Z 43.458 30.264 28.668 29.373 68.382 32.182 128.129

DiatomSizeReduction 0.055 0.054 0.064 0.132 49.308 0.418 0.033
DistalPhalanxOutlineAgeGroup 1.380 1.074 1.407 1.509 11.539 1.761 0.981

DistalPhalanxOutlineCorrect 2.501 1.968 2.267 2.634 13.169 2.991 2.374
DistalPhalanxTW 1.148 0.906 1.015 1.159 10.957 1.228 0.867

ECG200 7.374 6.400 6.871 7.047 19.514 8.257 10.107
ECG5000 8.951 8.961 10.601 10.265 34.558 12.098 14.517

ECGFiveDays 9.816 9.019 9.364 9.407 17.898 9.837 23.975
Earthquakes 148.959 85.219 85.470 85.515 ∞ 85.788 330.776

ElectricDevices 27.852 23.769 23.783 24.009 ∞ 24.869 56.470
FISH 0.978 0.641 0.662 0.957 63.566 1.680 1.543

FaceAll 15.068 12.373 13.248 13.494 24.582 15.980 29.982
FaceFour 15.500 14.519 15.002 14.849 ∞ 16.339 25.410

FacesUCR 15.033 13.077 13.405 14.174 30.621 14.796 27.026
FordA 56.936 45.492 46.170 46.038 96.087 49.723 218.482
FordB 59.117 47.812 47.058 47.642 102.279 50.262 250.595

Gun Point 7.204 2.507 2.037 2.211 22.590 2.374 7.286
Ham 24.833 19.101 20.397 20.713 55.769 22.807 30.685

HandOutlines 3.400 2.690 2.814 28.759 353.235 3.422 7.838
Haptics 16.424 14.351 14.129 14.320 172.988 16.464 39.559
Herring 1.212 0.946 1.022 1.349 71.388 2.097 1.884

InlineSkate 83.107 29.672 22.819 N/A N/A N/A N/A
ItalyPowerDemand 2.442 2.124 2.316 2.372 5.434 2.355 2.329

MedicalImages 6.934 5.809 5.980 6.089 22.777 6.252 10.911
MiddlePhalanxOutlineAgeGroup 0.858 0.753 1.305 1.375 11.474 1.605 0.624

MiddlePhalanxOutlineCorrect 0.832 0.714 0.985 1.030 11.643 1.678 0.611
MiddlePhalanxTW 0.755 0.581 0.963 1.206 10.684 1.274 0.447

MoteStrain 24.177 21.639 21.616 21.554 32.007 22.437 26.646
NonInvasiveFatalECG Thorax1 6.671 3.324 4.738 5.031 59.162 6.378 3.568
NonInvasiveFatalECG Thorax2 2.559 3.159 3.587 4.097 40339.200 6.494 2.864

OSULeaf 30.041 20.692 20.034 19.950 76.057 23.915 136.512
OliveOil 0.657 0.959 1.494 1.804 95.499 3.420 0.008

PhalangesOutlinesCorrect 1.383 1.114 1.405 1.516 11.070 1.743 1.210
Phoneme 99.205 72.412 73.666 73.767 157.124 78.664 138.157

Plane 1.079 0.849 1.220 1.629 20.328 2.111 1.209
ProximalPhalanxOutlineAgeGroup 0.618 0.511 0.691 0.878 10.437 1.177 0.322

ProximalPhalanxOutlineCorrect 0.749 0.654 0.833 0.882 10.767 1.111 0.615
ProximalPhalanxTW 0.653 0.536 0.672 0.778 10.377 1.133 0.462
RefrigerationDevices 159.745 146.601 140.634 141.200 ∞ 148.931 363.732

ScreenType 156.442 123.746 121.432 122.247 ∞ 132.748 334.379
ShapeletSim 236.039 123.605 125.657 126.062 154.480 130.428 283.458

ShapesAll 15.267 7.108 6.466 6.818 58.734 8.236 67.790
SmallKitchenAppliances 176.073 164.419 162.009 162.585 ∞ 168.170 524.542
SonyAIBORobotSurface 5.735 4.916 5.425 5.337 ∞ 5.813 5.430

SonyAIBORobotSurfaceII 11.994 11.048 11.278 11.405 6637415.793 11.481 13.783
StarLightCurves 22.342 11.757 7.934 7.654 102.255 11.600 47.353

Strawberry 1.392 1.191 1.477 1.627 28.696 2.347 1.300
SwedishLeaf 2.409 1.968 2.476 2.904 19.638 3.283 6.274

Symbols 0.845 0.488 0.439 0.460 ∞ 0.828 4.953
ToeSegmentation1 35.904 27.461 26.554 26.988 63.040 29.838 129.858
ToeSegmentation2 34.177 24.476 23.003 23.194 ∞ 24.944 170.222

Trace 2.686 1.453 0.870 1.031 43.017 2.233 26.037
TwoLeadECG 1.811 1.514 1.641 1.701 7.961 1.802 2.216
Two Patterns 12.048 9.294 7.764 8.143 22.489 8.937 60.963

UWaveGestureLibraryAll 68.276 42.692 38.327 40.320 ∞ 49.486 181.901
Wine 0.728 0.500 0.746 1.147 32.463 1.812 0.094

WordsSynonyms 9.305 4.917 4.491 4.740 48.605 7.209 29.713
Worms 100.683 64.029 61.527 61.296 35.906 68.282 421.381

WormsTwoClass 110.292 68.932 66.258 65.964 37.047 72.387 430.774
synthetic control 14.366 7.115 7.506 7.516 15.931 8.123 12.187

uWaveGestureLibrary X 27.610 16.618 14.902 14.442 ∞ 18.269 75.119
uWaveGestureLibrary Y 29.964 16.106 14.556 14.450 ∞ 15.961 74.405
uWaveGestureLibrary Z 40.154 24.001 22.462 22.656 ∞ 25.040 107.540

wafer 25.831 23.595 25.828 25.195 ∞ 27.323 65.100
yoga 27.418 13.524 11.828 12.051 40.171 15.319 111.236



Soft-DTW: a Differentiable Loss Function for Time-Series

H. Barycenters: DTW loss (Eq. (4) with γ = 0) achieved with Euclidean init

Dataset Soft-DTW γ = 1 γ = 0.1 γ = 0.01 γ = 0.001 Subgradient method DBA Euclidean mean

50words 5.400 2.895 2.355 2.439 4.064 2.595 22.294
Adiac 0.124 0.103 0.089 0.069 0.081 0.071 0.103

ArrowHead 2.677 1.759 1.282 1.327 1.587 1.411 2.965
Beef 14.814 6.412 5.252 5.694 11.112 5.528 31.486

BeetleFly 33.082 20.819 20.781 22.127 25.554 21.960 191.285
BirdChicken 21.646 9.445 7.807 8.026 473.653 8.243 70.614

CBF 22.498 11.844 11.433 11.597 15.321 12.291 28.228
Car 1.556 0.932 0.693 0.901 1.171 1.079 2.439

ChlorineConcentration 19.239 10.663 10.434 10.468 11.370 10.638 13.549
CinC ECG torso 112.562 78.292 69.415 70.383 76.693 68.641 751.445

Coffee 1.078 0.657 0.460 0.393 0.435 0.399 0.571
Computers 172.590 138.605 144.576 146.409 ∞ 154.956 381.271
Cricket X 48.334 35.136 33.103 33.312 42.018 34.430 125.879
Cricket Y 41.804 31.395 31.044 31.158 35.957 31.749 97.393
Cricket Z 46.957 33.453 34.005 33.708 45.125 36.025 140.474

DiatomSizeReduction 0.039 0.033 0.028 0.021 0.024 0.019 0.032
DistalPhalanxOutlineAgeGroup 1.578 0.988 0.784 0.779 0.847 0.794 1.075

DistalPhalanxOutlineCorrect 2.878 2.002 1.751 1.754 2475.922 1.790 2.780
DistalPhalanxTW 1.377 0.837 0.655 0.651 0.773 0.667 0.997

ECG200 7.266 5.608 5.395 5.424 5.955 5.494 9.638
ECG5000 12.430 10.377 10.332 10.343 12.340 10.595 18.886

ECGFiveDays 8.416 7.452 7.046 7.101 145.106 7.145 23.477
Earthquakes 172.035 91.568 90.684 91.071 ∞ 92.126 335.240

ElectricDevices 30.832 26.480 27.131 27.076 ∞ 27.615 57.938
FISH 1.183 0.806 0.541 0.508 0.645 0.551 1.933

FaceAll 18.102 13.305 13.104 13.074 16.491 13.915 40.404
FaceFour 17.070 13.069 12.984 13.091 ∞ 13.568 28.203

FacesUCR 17.172 13.081 13.293 13.394 15.780 13.498 35.942
FordA 53.903 42.199 41.835 41.966 53.545 44.259 235.362
FordB 61.168 48.150 47.327 47.743 60.120 50.121 246.802

Gun Point 5.924 2.132 1.695 1.666 2.543 1.682 5.906
Ham 25.353 18.841 17.457 17.294 ∞ 17.917 32.456

HandOutlines 2.238 1.718 1.004 0.527 ∞ 0.515 6.452
Haptics 12.554 8.874 7.785 8.197 12.193 8.219 35.613
Herring 1.655 1.117 0.809 0.760 0.956 0.817 2.564

InlineSkate 100.849 46.460 27.248 35.578 N/A N/A N/A
ItalyPowerDemand 2.597 1.990 1.956 1.985 2.132 1.997 2.449

MedicalImages 5.719 4.319 4.145 4.070 4.791 4.371 8.047
MiddlePhalanxOutlineAgeGroup 0.870 0.578 0.427 0.415 0.464 0.426 0.552

MiddlePhalanxOutlineCorrect 0.799 0.609 0.460 0.443 0.501 0.461 0.577
MiddlePhalanxTW 0.658 0.466 0.335 0.321 0.358 0.332 0.434

MoteStrain 24.451 20.720 20.829 21.057 ∞ 21.273 26.694
NonInvasiveFatalECG Thorax1 1.619 1.384 0.907 0.785 0.691 0.814 1.400
NonInvasiveFatalECG Thorax2 1.624 1.370 0.932 0.827 2.163 0.853 1.409

OSULeaf 27.428 18.666 18.544 18.595 24.692 20.244 135.980
OliveOil 0.367 0.074 0.022 0.013 0.011 0.009 0.011

PhalangesOutlinesCorrect 1.172 0.895 0.699 0.695 0.766 0.704 1.002
Phoneme 135.535 104.971 105.478 108.031 126.055 108.513 254.392

Plane 0.928 0.600 0.404 0.399 0.499 0.430 1.203
ProximalPhalanxOutlineAgeGroup 0.820 0.502 0.361 0.346 0.390 0.356 0.512

ProximalPhalanxOutlineCorrect 0.816 0.630 0.463 0.452 0.517 0.461 0.669
ProximalPhalanxTW 0.637 0.431 0.313 0.304 0.341 0.308 0.471
RefrigerationDevices 154.420 133.321 135.721 135.300 ∞ 142.697 358.823

ScreenType 189.188 143.582 143.894 141.776 ∞ 148.464 325.840
ShapeletSim 231.937 124.443 122.000 122.506 154.089 127.977 284.079

ShapesAll 13.416 7.519 6.420 6.509 7.317 7.478 80.306
SmallKitchenAppliances 188.030 173.670 169.755 167.097 ∞ 173.004 505.356
SonyAIBORobotSurface 5.715 4.002 3.870 3.896 ∞ 3.828 5.444

SonyAIBORobotSurfaceII 11.300 8.947 8.853 8.871 12.651 8.977 14.225
StarLightCurves 13.581 6.619 4.054 3.765 7.247 4.517 30.354

Strawberry 2.218 1.413 1.128 1.070 1.374 1.156 2.128
SwedishLeaf 2.957 2.068 2.049 2.081 2.520 2.163 6.236

Symbols 0.762 0.451 0.412 0.401 ∞ 0.474 4.822
ToeSegmentation1 35.832 26.067 26.337 25.735 31.157 27.493 131.683
ToeSegmentation2 34.264 22.238 20.800 21.563 ∞ 23.080 164.101

Trace 1.737 1.744 1.508 1.378 4.170 1.969 26.814
TwoLeadECG 1.533 1.172 1.030 1.043 1.323 1.093 2.046
Two Patterns 10.891 7.505 6.045 6.079 18.987 6.584 66.027

UWaveGestureLibraryAll 67.549 38.179 32.894 33.426 ∞ 39.241 167.486
Wine 0.707 0.188 0.127 0.111 0.114 0.110 0.118

WordsSynonyms 9.804 7.282 6.711 6.785 8.884 6.868 39.843
Worms 101.850 61.067 58.725 56.793 244.738 63.234 415.674

WormsTwoClass 122.901 68.771 64.655 64.898 1297.616 72.011 395.088
synthetic control 18.147 9.189 9.307 9.350 11.520 9.614 19.237

uWaveGestureLibrary X 34.423 19.787 18.746 17.807 ∞ 24.269 93.839
uWaveGestureLibrary Y 27.744 14.309 13.010 13.607 ∞ 15.283 51.854
uWaveGestureLibrary Z 21.927 10.081 8.456 8.453 ∞ 11.040 47.947

wafer 32.561 29.197 28.908 28.820 ∞ 33.379 67.413
yoga 23.698 11.632 9.433 9.204 16.239 10.058 93.688



Soft-DTW: a Differentiable Loss Function for Time-Series

I. k-means clustering: DTW loss achieved (Eq. (5) with γ = 0, log-scaled) when using random

initialization

Dataset Soft-DTW γ = 1 γ = 0.1 γ = 0.01 γ = 0.001 Subgradient method DBA Euclidean mean

50words 16.294 16.193 16.125 16.135 16.163 16.156 16.205
Adiac 11.933 11.933 11.933 11.933 11.933 11.933 11.933

ArrowHead 9.020 8.757 8.699 8.687 8.732 8.692 8.958
Beef 11.215 11.095 11.069 11.061 11.061 11.117 11.215

BeetleFly 9.946 9.618 9.531 9.592 9.619 9.591 10.368
BirdChicken 9.996 9.652 9.374 9.515 9.870 9.585 10.335

CBF 10.150 10.065 10.005 10.006 10.009 10.009 10.150
Car 9.392 9.290 9.067 9.039 9.059 9.046 9.276

ChlorineConcentration 15.512 15.214 15.182 15.175 15.176 15.176 15.331
CinC ECG torso 13.134 12.837 12.848 12.868 13.621 12.877 13.621

Coffee 7.150 6.893 6.692 6.628 6.693 6.651 6.825
Computers 16.420 16.498 16.489 16.502 16.960 16.475 16.960
Cricket X 16.922 16.696 16.629 16.628 16.649 16.653 16.955
Cricket Y 16.783 16.588 16.545 16.533 16.570 16.570 16.803
Cricket Z 16.874 16.669 16.597 16.593 16.620 16.620 16.981

DiatomSizeReduction 5.959 5.907 5.889 5.739 5.798 5.758 5.932
DistalPhalanxOutlineAgeGroup 11.193 11.220 11.202 11.198 11.194 11.196 11.158

DistalPhalanxOutlineCorrect 12.467 12.373 12.340 12.342 12.494 12.350 12.483
DistalPhalanxTW 11.244 11.260 11.263 11.251 11.264 11.261 11.222

ECG200 11.395 11.317 11.323 11.274 11.300 11.289 11.501
ECG5000 16.169 16.084 16.142 16.136 16.137 16.136 16.211

ECGFiveDays 8.734 8.579 8.522 8.513 8.713 8.533 8.818
Earthquakes 14.757 14.727 14.726 14.728 14.757 14.726 14.757

ElectricDevices 22.404 22.428 22.401 22.398 22.630 22.399 22.332
FISH 10.841 10.740 10.594 10.514 10.560 10.566 10.841

FaceAll 16.272 16.187 16.185 16.183 16.197 16.182 16.291
FaceFour 10.422 10.318 10.302 10.316 10.575 10.321 10.533

FacesUCR 14.479 14.432 14.426 14.423 14.430 14.429 14.431
FordA 18.604 18.390 18.388 18.387 18.977 18.385 18.977
FordB 17.620 17.429 17.425 17.426 17.466 17.416 17.998

Gun Point 10.242 10.019 9.843 9.743 9.883 9.738 10.130
Ham 12.772 12.545 12.488 12.473 13.240 12.506 12.957

MedicalImages 15.081 14.982 14.985 14.979 14.986 14.986 15.032
MiddlePhalanxOutlineAgeGroup 9.909 9.919 9.856 9.818 9.824 9.822 9.856

MiddlePhalanxOutlineCorrect 11.121 11.088 10.984 10.951 10.962 10.961 10.923
MiddlePhalanxTW 10.514 10.514 10.514 10.514 10.514 10.514 10.514

MoteStrain 9.560 9.484 9.460 9.451 9.201 9.470 9.557
NonInvasiveFatalECG Thorax1 17.728 N/A N/A N/A N/A N/A N/A

ProximalPhalanxTW 11.055 10.993 10.978 10.958 10.968 10.965 10.968
RefrigerationDevices 17.391 17.351 17.311 17.322 17.758 17.324 17.758

ScreenType 17.467 17.388 17.306 17.297 18.126 17.289 17.838
ShapeletSim 11.176 10.896 10.905 10.906 10.916 10.915 11.176

ShapesAll 17.539 17.405 17.331 17.333 17.605 17.357 17.509
SmallKitchenAppliances 17.551 17.611 17.537 17.606 18.007 17.561 18.007
SonyAIBORobotSurface 8.181 7.959 7.934 7.943 8.247 7.958 8.084

SonyAIBORobotSurfaceII 9.349 9.265 9.267 9.267 9.325 9.277 9.338
StarLightCurves 19.435 19.110 19.012 N/A N/A N/A N/A

Trace 14.570 14.570 14.556 14.550 14.555 14.556 14.553
TwoLeadECG 6.939 6.939 6.892 6.879 6.936 6.892 6.743
Two Patterns 17.416 17.379 17.317 17.325 17.524 17.307 17.524

UWaveGestureLibraryAll 18.911 18.641 18.514 18.531 19.282 18.537 19.244
Wine 7.527 7.297 6.482 6.358 6.390 6.353 6.223

WordsSynonyms 15.209 15.093 15.024 15.025 15.053 15.036 15.159
Worms 14.184 14.051 13.889 13.896 14.943 13.968 14.648

WormsTwoClass 13.727 13.471 13.429 13.462 14.944 13.494 14.944
synthetic control 15.338 15.303 15.292 15.291 15.303 15.295 15.278

uWaveGestureLibrary X 18.789 18.568 N/A N/A N/A N/A N/A



Soft-DTW: a Differentiable Loss Function for Time-Series

J. k-means clustering: DTW loss achieved (Eq. (5) with γ = 0, log-scaled) when using

Euclidean mean initialization

Dataset Soft-DTW γ = 1 γ = 0.1 γ = 0.01 γ = 0.001 Subgradient method DBA Euclidean mean

50words 16.233 16.145 16.046 16.035 16.045 16.233 16.233
Adiac 12.311 12.311 12.264 12.241 12.234 12.233 12.311

ArrowHead 9.014 8.963 8.766 8.746 8.851 8.809 9.014
Beef 11.225 11.110 11.088 11.079 11.077 11.070 11.300

BeetleFly 9.895 9.290 9.268 9.240 9.512 10.926 10.926
BirdChicken 10.032 9.542 9.352 9.338 9.422 9.414 10.335

CBF 10.246 9.995 9.910 9.908 9.933 9.921 10.246
Car 9.276 9.229 8.989 8.910 8.936 8.935 9.276

ChlorineConcentration 15.331 15.291 15.254 15.252 15.270 15.252 15.331
CinC ECG torso 13.197 12.803 12.752 12.728 13.723 13.723 13.723

Coffee 6.825 6.825 6.668 6.599 6.605 6.591 6.825
Computers 16.417 16.346 16.301 16.289 17.167 16.342 17.167
Cricket X 16.895 16.719 16.622 16.623 16.612 16.600 16.987
Cricket Y 16.770 16.651 16.546 16.514 16.515 16.527 16.861
Cricket Z 16.924 16.748 16.670 16.633 16.653 16.653 17.028

DiatomSizeReduction 5.963 5.963 5.963 5.884 5.897 5.896 5.963
DistalPhalanxOutlineAgeGroup 11.164 11.164 11.164 11.164 11.164 11.164 11.164

DistalPhalanxOutlineCorrect 12.544 12.533 12.494 12.475 12.240 12.479 12.577
DistalPhalanxTW 11.242 11.259 11.256 11.243 11.251 11.245 11.259

ECG200 11.462 11.291 11.239 11.222 11.231 11.234 11.503
ECG5000 16.253 16.180 16.171 16.183 16.170 16.172 16.262

ECGFiveDays 8.738 8.614 8.543 8.549 8.709 8.559 8.818
Earthquakes 15.113 14.625 14.601 14.599 15.952 14.597 15.952

ElectricDevices 22.295 22.325 22.291 22.290 22.379 22.283 22.379
FISH 10.904 10.843 10.589 10.543 10.527 10.555 10.904

FaceAll 16.278 16.162 16.145 16.145 16.152 16.140 16.347
FaceFour 10.376 10.273 10.239 10.226 10.566 10.241 10.566

FacesUCR 14.472 14.434 14.406 14.407 14.391 14.481 14.481
FordA 18.581 18.354 18.354 18.360 20.038 20.038 20.038
FordB 17.649 17.443 17.429 17.436 17.466 17.427 19.143

Gun Point 10.334 10.027 9.806 9.751 9.902 9.833 10.334
Ham 12.805 12.603 12.559 12.558 12.974 12.561 12.974

HandOutlines 13.712 N/A N/A N/A N/A N/A N/A
MedicalImages 15.082 14.963 14.940 14.942 14.950 14.941 15.091

MiddlePhalanxOutlineAgeGroup 9.856 9.856 9.855 9.821 9.823 9.821 9.856
MiddlePhalanxOutlineCorrect 10.962 10.962 10.962 10.959 10.950 10.950 10.962

MiddlePhalanxTW 10.558 10.587 10.587 10.569 10.572 10.570 10.587
MoteStrain 9.551 9.454 9.413 9.451 9.557 9.446 9.557

NonInvasiveFatalECG Thorax1 17.765 N/A N/A N/A N/A N/A N/A
ProximalPhalanxTW 10.978 10.973 10.978 10.978 10.978 10.978 10.978
RefrigerationDevices 17.260 17.202 17.093 17.073 18.140 17.095 18.140

ScreenType 17.430 17.359 17.294 17.292 17.838 17.323 17.838
ShapeletSim 11.497 10.864 10.845 10.853 10.865 11.608 11.608

ShapesAll 17.560 17.431 17.335 17.328 17.560 17.560 17.560
SmallKitchenAppliances 17.310 17.273 17.357 17.357 18.206 18.206 18.206
SonyAIBORobotSurface 8.084 7.980 7.941 7.947 8.084 7.948 8.084

SonyAIBORobotSurfaceII 9.338 9.207 9.196 9.195 9.338 9.195 9.338
StarLightCurves 19.457 19.178 19.083 N/A N/A N/A N/A

Trace 14.553 14.553 14.553 14.549 14.553 14.553 14.553
TwoLeadECG 6.743 6.705 6.623 6.606 6.666 6.633 6.743
Two Patterns 17.084 17.363 17.242 17.255 17.518 17.316 17.942

UWaveGestureLibraryAll 18.820 18.613 18.539 18.488 19.259 18.508 19.259
Wine 6.223 6.223 6.223 6.223 6.223 6.205 6.223

WordsSynonyms 15.184 15.036 14.947 14.951 14.965 14.959 15.196
Worms 14.043 13.860 13.791 13.777 14.696 13.772 14.696

WormsTwoClass 13.699 13.440 13.322 13.337 15.076 13.390 15.076
synthetic control 15.472 15.367 15.337 15.338 15.330 15.336 15.472

uWaveGestureLibrary X 18.844 18.562 N/A N/A N/A N/A N/A



Soft-DTW: a Differentiable Loss Function for Time-Series

K. Time-series prediction: DTW loss achieved when using random init

Dataset Soft-DTW loss γ = 1 γ = 0.1 γ = 0.01 γ = 0.001 Euclidean loss

50words 6.473 4.921 4.999 6.489 18.734
Adiac 0.094 0.074 0.078 0.109 0.103

ArrowHead 1.851 1.708 1.933 1.909 2.073
Beef 12.229 8.688 10.244 9.126 22.228

BeetleFly 35.037 25.439 27.588 23.494 50.610
BirdChicken 31.878 19.914 25.100 14.981 30.693

CBF 10.802 9.263 9.595 10.151 12.868
Car 1.724 2.307 2.202 1.318 1.588

ChlorineConcentration 7.876 2.108 2.331 1.735 0.769
CinC ECG torso 45.675 26.337 23.567 24.550 48.171

Coffee 0.914 0.727 1.662 1.883 0.660
Computers 92.584 84.723 78.953 75.435 235.208
Cricket X 9.394 8.042 7.123 7.226 12.080
Cricket Y 11.989 9.643 9.534 9.545 15.002
Cricket Z 9.161 6.889 6.585 7.200 11.003

DiatomSizeReduction 1.182 0.922 0.820 0.897 1.203
DistalPhalanxOutlineAgeGroup 0.426 0.291 0.541 0.496 0.231

DistalPhalanxOutlineCorrect 0.494 0.476 0.564 0.591 0.351
DistalPhalanxTW 0.441 0.330 0.305 1.214 0.231

ECG200 1.874 1.716 1.884 1.734 1.905
ECG5000 4.895 4.705 4.543 4.441 5.463

ECGFiveDays 1.834 1.944 1.699 1.642 2.220
Earthquakes 74.738 59.973 60.877 57.827 147.980

ElectricDevices 20.186 15.125 15.218 15.287 37.121
FISH 0.464 0.429 0.354 0.459 0.462

FaceAll 9.317 7.451 7.902 7.276 10.716
FaceFour 19.564 20.881 28.150 28.839 46.841

FacesUCR 15.359 14.643 16.143 17.428 28.576
Gun Point 0.896 0.805 0.923 0.834 0.858

Ham 20.154 17.931 17.786 17.413 24.340
Haptics 16.174 17.775 17.142 17.423 23.130
Herring 1.000 0.712 0.666 0.762 0.865

InsectWingbeatSound 3.460 2.823 2.458 2.220 5.437
ItalyPowerDemand 0.911 0.893 0.711 0.798 0.881

LargeKitchenAppliances 63.153 60.739 60.157 61.841 266.853
Lighting2 73.293 66.341 65.335 66.881 147.668
Lighting7 44.446 42.699 40.608 41.502 68.902

Meat 0.162 0.242 0.246 0.650 0.099
MedicalImages 1.023 0.853 0.708 0.778 1.211

MiddlePhalanxOutlineAgeGroup 0.343 0.347 0.570 0.400 0.312
MiddlePhalanxOutlineCorrect 0.278 0.204 0.227 0.202 0.182

MiddlePhalanxTW 0.251 0.153 0.445 0.314 0.132
MoteStrain 10.188 9.986 11.119 10.250 11.183

NonInvasiveFatalECG Thorax1 1.002 0.920 0.675 0.634 1.219
OSULeaf 15.125 11.722 11.086 10.775 30.739
OliveOil 0.476 0.683 2.082 2.076 0.020

PhalangesOutlinesCorrect 0.352 0.216 0.352 0.338 0.170
Phoneme 160.536 150.017 148.175 145.093 219.704

Plane 0.619 0.564 0.834 0.788 0.630
ProximalPhalanxOutlineAgeGroup 0.134 0.062 0.105 0.118 0.046

ProximalPhalanxOutlineCorrect 0.129 0.047 0.089 0.128 0.044
ProximalPhalanxTW 0.154 0.077 0.102 0.150 0.055
RefrigerationDevices 108.421 93.519 89.370 89.873 160.361

ShapeletSim 102.413 70.455 71.156 72.094 108.936
ShapesAll 10.391 9.027 7.850 7.207 18.348

SonyAIBORobotSurface 4.453 4.494 4.318 4.910 4.388
SonyAIBORobotSurfaceII 8.072 8.302 7.758 8.669 8.628

Strawberry 0.123 0.088 0.137 0.100 0.081
SwedishLeaf 1.486 1.277 1.316 1.169 1.633

Symbols 17.963 14.039 15.172 13.192 38.268
ToeSegmentation1 23.866 22.987 26.056 22.401 35.806
ToeSegmentation2 41.450 33.100 30.931 31.106 61.899

Trace 0.563 0.379 0.352 0.279 0.582
TwoLeadECG 0.441 0.394 0.318 0.320 0.336
Two Patterns 15.035 10.100 10.588 8.584 35.923

UWaveGestureLibraryAll 40.324 28.975 26.193 25.897 93.019
Wine 0.164 0.203 1.417 0.958 0.028

WordsSynonyms 12.466 10.437 9.165 9.219 32.003
Worms 81.236 63.938 60.950 59.995 114.528

WormsTwoClass 78.455 66.609 60.207 61.685 122.619
synthetic control 7.709 5.315 5.390 5.506 7.690

uWaveGestureLibrary X 13.096 9.995 10.143 9.433 19.995
uWaveGestureLibrary Y 9.793 7.272 7.327 7.225 17.706
uWaveGestureLibrary Z 11.883 8.909 8.494 8.416 20.092

wafer 1.049 0.473 0.386 0.496 2.636
yoga 2.932 2.431 1.995 3.309 4.305



Soft-DTW: a Differentiable Loss Function for Time-Series

L. Time-series prediction: DTW loss achieved when using Euclidean init

Dataset Soft-DTW loss γ = 1 γ = 0.1 γ = 0.01 γ = 0.001 Euclidean loss

50words 6.330 5.628 4.885 4.553 18.734
Adiac 0.082 0.076 0.064 0.079 0.103

ArrowHead 1.823 2.016 1.762 2.106 2.073
Beef 7.250 6.940 7.146 3.757 22.228

BeetleFly 32.430 26.600 27.199 29.003 50.610
BirdChicken 24.952 22.600 19.914 20.540 30.693

CBF 10.744 8.978 9.215 8.398 12.868
Car 0.906 0.812 0.709 0.740 1.588

ChlorineConcentration 6.018 0.979 0.695 0.698 0.769
CinC ECG torso 29.892 18.638 19.635 19.191 48.171

Coffee 0.870 0.582 0.511 0.496 0.660
Computers 86.619 79.250 82.215 81.417 235.208
Cricket X 10.954 8.200 7.932 8.296 12.080
Cricket Y 11.901 10.150 10.265 9.574 15.002
Cricket Z 9.714 7.760 7.544 8.041 11.003

DiatomSizeReduction 0.964 0.852 0.874 0.869 1.203
DistalPhalanxOutlineAgeGroup 0.403 0.206 0.175 0.177 0.231

DistalPhalanxOutlineCorrect 0.515 0.310 0.300 0.262 0.351
DistalPhalanxTW 0.468 0.228 0.186 0.178 0.231

ECG200 1.907 1.541 1.565 1.536 1.905
ECG5000 4.737 4.190 4.398 4.148 5.463

ECGFiveDays 1.584 1.396 1.322 1.335 2.220
Earthquakes 71.461 55.819 56.504 57.153 147.980

ElectricDevices 19.499 15.045 14.999 15.228 37.121
FISH 0.439 0.353 0.319 0.318 0.462

FaceAll 9.309 8.687 7.803 7.853 10.716
FaceFour 20.483 20.411 21.259 21.444 46.841

FacesUCR 14.984 14.530 14.403 14.729 28.576
Gun Point 0.447 0.368 0.300 0.297 0.858

Ham 16.152 14.717 12.252 13.424 24.340
Haptics 15.177 14.275 12.394 11.931 23.130
Herring 0.310 0.305 0.292 0.249 0.865

InsectWingbeatSound 3.104 2.346 2.186 2.036 5.437
ItalyPowerDemand 0.802 0.595 0.623 0.654 0.881

LargeKitchenAppliances 61.531 63.834 59.116 57.219 266.853
Lighting2 65.602 62.240 61.561 60.826 147.668
Lighting7 43.930 41.668 40.535 39.422 68.902

Meat 0.173 0.140 0.103 0.077 0.099
MedicalImages 0.932 0.671 0.615 0.651 1.211

MiddlePhalanxOutlineAgeGroup 0.283 0.200 0.134 0.154 0.312
MiddlePhalanxOutlineCorrect 0.269 0.169 0.133 0.148 0.182

MiddlePhalanxTW 0.225 0.126 0.111 0.094 0.132
MoteStrain 9.704 9.321 9.385 10.156 11.183

NonInvasiveFatalECG Thorax1 0.921 0.736 0.540 0.536 1.219
OSULeaf 16.168 14.372 13.354 12.350 30.739
OliveOil 0.179 0.298 0.034 0.026 0.020

PhalangesOutlinesCorrect 0.328 0.231 0.161 0.153 0.170
Phoneme 173.501 158.036 159.293 158.776 219.704

Plane 0.454 0.343 0.311 0.370 0.630
ProximalPhalanxOutlineAgeGroup 0.137 0.056 0.039 0.036 0.046

ProximalPhalanxOutlineCorrect 0.118 0.046 0.033 0.030 0.044
ProximalPhalanxTW 0.164 0.067 0.054 0.045 0.055
RefrigerationDevices 107.693 95.458 90.328 91.687 160.361

ShapeletSim 106.805 73.626 72.985 73.987 108.936
ShapesAll 11.946 7.724 7.127 7.522 18.348

SonyAIBORobotSurface 4.068 3.619 3.400 3.737 4.388
SonyAIBORobotSurfaceII 6.954 6.585 6.410 6.593 8.628

Strawberry 0.110 0.082 0.071 0.069 0.081
SwedishLeaf 1.438 1.151 1.095 1.108 1.633

Symbols 14.717 12.040 15.229 16.199 38.268
ToeSegmentation1 24.293 20.905 22.914 22.566 35.806
ToeSegmentation2 44.439 36.333 35.804 41.121 61.899

Trace 0.578 0.331 0.272 0.250 0.582
TwoLeadECG 0.157 0.131 0.129 0.149 0.336
Two Patterns 14.843 11.616 11.622 11.059 35.923

UWaveGestureLibraryAll 42.336 30.864 27.572 26.573 93.019
Wine 0.069 0.263 0.045 0.029 0.028

WordsSynonyms 12.654 10.089 9.887 8.946 32.003
Worms 74.589 71.946 70.245 67.669 114.528

WormsTwoClass 81.311 61.360 62.281 74.672 122.619
synthetic control 7.455 5.509 5.374 5.369 7.690

uWaveGestureLibrary X 14.151 10.065 9.231 9.197 19.995
uWaveGestureLibrary Y 9.852 7.285 7.066 7.036 17.706
uWaveGestureLibrary Z 12.019 8.893 8.453 8.513 20.092

wafer 1.125 0.838 0.765 0.818 2.636
yoga 2.510 2.209 1.807 1.851 4.305


