Efficient and Modular Implicit Differentiation

Mathieu Blondel

June 4, 2021
Gradient-based learning

- Gradient-based training algorithms are the workhorse of modern machine learning.
- Deriving gradients by hand is tedious and error prone.
- This becomes quickly infeasible for complex models.
- Changes to the model require rederiving the gradient.
- Deep learning = GPU + data + autodiff

This talk: differentiating optimization problem solutions
Outline

1 Automatic differentiation

2 Argmin differentiation

3 Proposed framework

4 Experimental results
Automatic differentiation

- Evaluates the derivatives of a function at a given point.

- Not the same as numerical differentiation.

- Not the same as symbolic differentiation, which returns a “human-readable” expression.

- In a neural network context, reverse autodiff is often known as backpropagation.
Automatic differentiation

- A program is defined as the composition of primitive operations that we know how to derive.

- The user can focus on the forward computation / model.

```python
import jax.numpy as jnp
from jax import grad, jit

def predict(params, inputs):
    for W, b in params:
        outputs = jnp.dot(inputs, W) + b
        inputs = jnp.tanh(outputs)
    return outputs

def logprob_fun(params, inputs, targets):
    preds = predict(params, inputs)
    return jnp.sum((preds - targets)**2)

grad_fun = jit(grad(logprob_fun))
```
Automatic differentiation

- Modern frameworks support higher-order derivatives

```python
def tanh(x):
    y = jnp.exp(-2.0 * x)
    return (1.0 - y) / (1.0 + y)

fp = grad(tanh)
fpp = grad(grad(tanh))
...```
Forward-mode vs. Reverse-mode

- **Forward-mode**
  - Computes Jacobian vector products (JVPs) along the forward pass
  - Each JVP call builds one column of the Jacobian
  - Efficient for tall Jacobians (more outputs than inputs)
  - Need not store intermediate computations

- **Reverse-mode**
  - Computes vector Jacobian products (VJPs) in reverse order
  - Each VJP call builds one row of the Jacobian
  - Efficient for wide matrices (more inputs than outputs)
  - Needs to store intermediate computations
Key components of an autodiff system

- JVPs and/or VJPs for all primitive operations
- Obtaining the computational graph
  - Ahead of time (from source or using a DSL)
  - Just in time (graph is built while being executed)
- Topological sort
- Forward-mode: forward pass (JVPs)
- Reverse-mode: forward pass + backward pass (VJPs)
Outline

1 Automatic differentiation

2 Argmin differentiation

3 Proposed framework

4 Experimental results
Notation

- Small letters for scalar-valued functions, e.g., $f$
- The gradient of $f : \mathbb{R}^d \rightarrow \mathbb{R}$

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(x) \\ \vdots \\ \frac{\partial f}{\partial x_d}(x) \end{bmatrix} \in \mathbb{R}^d$$

- The Hessian of $f : \mathbb{R}^d \rightarrow \mathbb{R}$ evaluated at $x \in \mathbb{R}^d$

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_d \partial x_1} & \cdots & \frac{\partial^2 f(x)}{\partial x_d^2} \end{bmatrix} \in \mathbb{R}^{d \times d}$$
Notation

- Capital letters for vector-valued functions, e.g., $F$
- The Jacobian of $F : \mathbb{R}^d \rightarrow \mathbb{R}^p$ evaluated at $x \in \mathbb{R}^d$
  \[
  \partial F(x) = \begin{bmatrix}
  \frac{\partial F_1(x)}{\partial x_1} & \cdots & \frac{\partial F_1(x)}{\partial x_d} \\
  \vdots & \ddots & \vdots \\
  \frac{\partial F_p(x)}{\partial x_1} & \cdots & \frac{\partial F_p(x)}{\partial x_d}
\end{bmatrix} = \begin{bmatrix}
  \nabla F_1(x)^\top \\
  \vdots \\
  \nabla F_p(x)^\top
\end{bmatrix} \in \mathbb{R}^{p \times d}
\]
- Jacobian-vector product (JVP) with $u \in \mathbb{R}^d$
  \[
  \partial F(x)u \in \mathbb{R}^p
\]
- Vector-Jacobian product (VJP) with $v^\top \in \mathbb{R}^p$
  \[
  v^\top \partial F(x) \in \mathbb{R}^d
\]
Argmin differentiation

- Consider the optimization

\[ x^*(\theta) = \arg\min_{x \in \mathbb{R}^d} f(x, \theta) \]

where \( f : \mathbb{R}^d \times \mathbb{R}^n \rightarrow \mathbb{R} \) is twice differentiable

- \( x^* : \mathbb{R}^n \rightarrow \mathbb{R}^d \) is an **implicit function**

- Extensions: constrained optimization, non-smooth optimization

- How to compute the Jacobian \( \partial x^*(\theta) \in \mathbb{R}^{d \times n} \)?

- Autodiff cannot be used as is: \( x^*(\theta) \) has no closed form in general
Application 1: bi-level optimization

\[
\arg\min_{\theta \in \mathbb{R}^n} h(\theta) = g(x^*(\theta)) \quad \text{subject to} \quad x^*(\theta) = \arg\min_{x \in \mathbb{R}^d} f(x, \theta)
\]

Gradient of the outer problem: \( \nabla h(\theta) = \partial x^*(\theta)^\top \nabla g(x^*(\theta)) \)

Useful in hyperparam optimization, meta-learning

Application 2: “optimization as a layer”

\[\cdots \rightarrow x^*(\theta) \rightarrow \cdots\]

Can impose structure on the output via regularization or constraints

Application 3: sensitivity analysis; \( \partial x^*(\theta) \) may be interesting in its own right (e.g., to answer a scientific question)
Unrolling

- Consider the sequence produced by an iterative algorithm
  \[ x_0(\theta), x_1(\theta), \ldots, x_K(\theta) \]

  where
  \[ x_k(\theta) = T(x_{k-1}(\theta), \theta) \]

- If the algorithm is convergent, \( \hat{x}(\theta) = x_K(\theta) \) can be used as an approximation of \( x^*(\theta) \)

- Idea: use \( \partial \hat{x}(\theta) \) as an approximation of \( \partial x^*(\theta) \)
Unrolling

- **Pros**
  - relatively simple (can use autodiff transparently)
  - derivatives $\partial \hat{x}(\theta)$ are consistent with forward pass $\hat{x}(\theta)$

- **Cons**
  - must reimplement the algorithm from scratch using the autodiff system (cannot reuse state-of-the-art software)
  - not all algorithms are autodiff friendly,
  - complexity scales linearly with $n$ (forward-mode)
  - memory scales linearly with $K$ (reverse-mode), which is especially problematic on GPU
  - the latter can be mitigated by using checkpointing, which trade-offs recomputations for smaller memory requirement
Implicit differentiation

- Use some optimality conditions to mathematically derive an expression of $\partial x^*(\theta)$

Examples that have been used in the past:

- Stationary conditions
- Karush–Kuhn–Tucker (KKT) conditions
- Proximal gradient fixed point

Often involves the resolution of a linear system

So far, the derivation and implementation were case-by-case and sometimes complicated

Not flexible: modeling changes require rederiving the expression of $\partial x^*(\theta)$
cvxpy layers

- cvxpy: an optimization toolbox for easily formulating convex optimization problems
- Reduces all problems to linear conic programming
- cvxpy layers (Agrawal et al 2019): making cvxpy differentiable
- Uses conic programming optimality conditions to derive a formula of the Jacobian
- Pro: very general (supports any convex problem)
- Con: conic solvers are rarely the state-of-the-art for each specific problem instance
Outline

1 Automatic differentiation
2 Argmin differentiation
3 Proposed framework
4 Experimental results
Overview

- Makes it very easy to add implicit differentiation on top of any solver (ability to reuse state-of-the-art implementations)

- The user provides (in Python) a mapping $F: \mathbb{R}^d \times \mathbb{R}^n \rightarrow \mathbb{R}^d$ capturing the optimality conditions solved by the solver.

- We combine autodiff of $F$ and implicit differentiation to automatically differentiate $x^*(\theta)$.

- Decouples the implicit differentiation mechanism from the optimality condition specification (in previous works, they were intertwined).

- Flexible: no mathematical derivation needed from the user, ability to experiment easily.
Example: differentiating ridge regression

```
X_tr, y_tr = load_data()

def f(x, theta): # objective function
 residual = jnp.dot(X_tr, x) - y_tr
 return (jnp.sum(residual ** 2) + theta * jnp.sum(x ** 2)) / 2

F = jax.grad(f) # optimality condition

@custom_root(F)
def ridge_solver(theta):
 XX = jnp.dot(X_tr.T, X_tr)
 Xy = jnp.dot(X_tr.T, y_tr)
 I = jnp.eye(X_tr.shape[0])
 return jnp.linalg.solve(XX + theta * I, Xy)

print(jax.jacobian(ridge_solver)(10.0))
```
Differentiating a root

- Let $F : \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R}^d$ be a user-provided mapping, capturing the optimality conditions of a problem.

- An optimal solution $x^*(\theta)$ should be a root of $F$:

$$F(x^*(\theta), \theta) = 0$$

- Implicit function theorem: $\partial x^*(\theta)$ exists if $\partial_1 F$ is a square invertible matrix at $(x^*(\theta), \theta)$.

- Using the chain rule, we get

$$\partial_1 F(x^*(\theta), \theta) \partial x^*(\theta) + \partial_2 F(x^*(\theta), \theta) = 0$$

$$\iff -\partial_1 F(x^*(\theta), \theta) \partial x^*(\theta) = \partial_2 F(x^*(\theta), \theta)$$
Differentiating a fixed point

- In many cases, $x^*(\theta)$ will be a **fixed point**:
  \[
  x^*(\theta) = T(x^*(\theta), \theta)
  \]
  where $T: \mathbb{R}^d \times \mathbb{R}^n \rightarrow \mathbb{R}^d$

- This is of course a special case since we can define
  \[
  F(x^*(\theta), \theta) = T(x^*(\theta), \theta) - x^*(\theta) = 0
  \]
Gradient descent

Let $x^*(\theta)$ be implicitly defined as

$$x^*(\theta) = \arg\min_{x \in \mathbb{R}^d} f(x, \theta),$$

where $f : \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R}$ is twice differentiable.

$F$ is simply the gradient mapping

$$F(x, \theta) = \nabla_1 f(x, \theta)$$

Equivalently, we can use the gradient descent fixed point

$$T(x, \theta) = x - \eta \nabla_1 f(x, \theta)$$

for any $\eta > 0$.
KKT conditions

Consider the problem

$$\arg\min_{z \in \mathbb{R}^p} f(z, \theta) \quad \text{subject to} \quad G(z, \theta) \leq 0, \ H(z, \theta) = 0$$

where $G$ and $H$ can be vector-valued

The stationarity, primal feasibility and complementary slackness conditions give

$$\nabla_1 f(z, \theta) + \left[ \partial_1 G(z, \theta) \right]^\top \lambda + \left[ \partial_1 H(z, \theta) \right]^\top \nu = 0$$

$$H(z, \theta) = 0$$

$$\lambda \circ G(z, \theta) = 0$$

where $\nu \in \mathbb{R}^q$ and $\lambda \in \mathbb{R}_+^r$ are the dual variables

This can be written as $F(x^*(\theta), \theta) = 0$ if we denote

$$x^*(\theta) = (z^*(\theta), \nu^*(\theta), \lambda^*(\theta))$$
KKT conditions

- In code:

```python
grad = jax.grad(f)

def F(x, theta):
 z, nu, lambd = x
 theta_f, theta_H, theta_G = theta

 _, H_vjp = jax.vjp(H, z, theta_H)
 stationarity = (grad(z, theta_f) + H_vjp(nu)[0])

 primal_feasability = H(z, theta_H)

 _, G_vjp = jax.vjp(G, z, theta_G)
 stationarity += G_vjp(lambd)[0]
 comp_slackness = G(z, theta_G) * lambd

 return stationarity, primal_feasability, comp_slackness
```

Efficient and Modular Implicit Differentiation
Quadratic programming

- Consider the QP

\[
\arg\min_{z \in \mathbb{R}^p} f(z, \theta) = \frac{1}{2} z^\top Q z + c^\top z \quad \text{s.t.} \quad H(z, \theta) = Ez - d = 0, \\
G(z, \theta) = Mz - h \leq 0.
\]

- The KKT conditions for this QP can again be written as

\[ F(x^*(\theta), \theta) = 0 \]

if we write

\[
x^*(\theta) = (z^*(\theta), \nu^*(\theta), \lambda^*(\theta))
\]

\[
\theta = (Q, c, E, d, M, h)
\]

- Just need to express \( f \), \( H \) and \( G \) directly in Python
Proximal gradient fixed point

- Let \( x^*(\theta) \) be implicitly defined as
  \[
  x^*(\theta) := \arg\min_{x \in \mathbb{R}^d} f(x, \theta) + g(x, \theta)
  \]
  where \( g : \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R} \) is potentially non-smooth.

- We can use the **proximal gradient fixed point**
  \[
  T(x, \theta) = \text{prox}_{\eta g}(x - \eta \nabla_1 f(x, \theta), \theta)
  \]
  where we defined the proximity operator
  \[
  \text{prox}_g(y, \theta) := \arg\min_{x \in \mathbb{R}^d} \frac{1}{2} \| x - y \|_2^2 + g(x, \theta)
  \]
  Proximal operators are Lipschitz continuous and therefore differentiable almost everywhere.

- Many enjoy a closed-form (soft thresholding, block soft thresholding, ...)

Proximal gradient fixed point

- In code:

```python
grad = jax.grad(f)

def T(x, theta):
 theta_f, theta_g = theta
 return prox(x - grad(x, theta_f), theta_g)
```

Mathieu Blondel
Efficient and Modular Implicit Differentiation
27 / 46
Projected gradient fixed point

- Let $x^*(\theta)$ be implicitly defined as

$$x^*(\theta) = \arg\min_{x \in C(\theta)} f(x, \theta)$$

where $C(\theta)$ is a convex set depending on $\theta$

- We can use the **projected gradient fixed point**

$$T(x, \theta) = \text{proj}_C(x - \eta \nabla f(x, \theta), \theta)$$

where we defined the Euclidean projection operator

$$\text{proj}_C(y, \theta) := \arg\min_{x \in C(\theta)} \| x - y \|_2^2$$

- Our library provides plenty of reusable projections
## Summary of optimality mappings

<table>
<thead>
<tr>
<th>Name</th>
<th>Solution needed</th>
<th>Oracles needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stationary Primal</td>
<td>Primal</td>
<td>$\nabla_1 f$</td>
</tr>
<tr>
<td>KKT</td>
<td>Primal and dual</td>
<td>$\nabla_1 f, H, G, \partial_1 H, \partial_1 G$</td>
</tr>
<tr>
<td>Proximal gradient</td>
<td>Primal</td>
<td>$\nabla_1 f, \text{prox}_{\eta g}$</td>
</tr>
<tr>
<td>Projected gradient</td>
<td>Primal</td>
<td>$\nabla_1 f, \text{proj}_C$</td>
</tr>
<tr>
<td>Mirror descent</td>
<td>Primal</td>
<td>$\nabla_1 f, \text{proj}_C^\varphi, \nabla \varphi$</td>
</tr>
<tr>
<td>Newton</td>
<td>Primal</td>
<td>$[\nabla_1^2 f(x, \theta)]^{-1}, \nabla_1 f(x, \theta)$</td>
</tr>
<tr>
<td>Block proximal gradient</td>
<td>Primal</td>
<td>$[\nabla_1 f]<em>j, [\text{prox}</em>{\eta g}]_j$</td>
</tr>
<tr>
<td>Conic programming</td>
<td>Residual map root</td>
<td>$\text{proj}<em>{\mathbb{R}^p \times \mathcal{K}^* \times \mathbb{R}</em>+}$</td>
</tr>
</tbody>
</table>

Oracles are accessed through their JVP or VJP.
Computing JVPs and VJPs

- Integrating $x^*(\theta)$ in forward-mode autodiff requires JVPs
  
  To obtain the JVP $Ju$, solve
  
  $$A(Ju) = Bu$$
  
- Integrating $x^*(\theta)$ in reverse-mode autodiff requires VJPs
  
  To obtain the VJP $v^\top J$, solve
  
  $$A^\top u = v$$
  
  then
  
  $$v^\top J = u^\top AJ = u^\top B$$
Solving the linear systems

- When $A$ is positive semi-definite, we can use conjugate gradient.
- When $A$ is indefinite, we can use GMRES or BiCGSTAB.
- All algorithms only require access to $A$ or $A^\top$ through matrix-vector products (linear maps).
- Since $A = \partial_1 F$ and $B = \partial_2 F$, we only access to JVPs or VJPs of $F$.
- When $A$ is indefinite, an alternative is the normal equation:

$$A^\top AJ = A^\top B$$

which can be solved using conjugate gradient.
Features needed from an autodiff system

- JVPs and VJPs
- Second derivatives when $F$ includes the gradient mapping $\nabla_1 f(x, \theta)$
- Custom JVPs and VJPs: this is how we are able to create `@custom_root` and `@custom_fixed_point`
- `jax.vmap`: vectorizing map (automatic batching)
- `jax.linear_transpose`: automatic transposition of linear maps
Jacobian bounds

- In practice, we almost never get $x^*(\theta)$ and thus never solve
  \[
  -\partial_1 F(x^*(\theta), \theta) \partial x^*(\theta) = \partial_2 F(x^*(\theta), \theta)
  \]
  \[
  A \in \mathbb{R}^{d \times d} \quad J \in \mathbb{R}^{d \times n} \quad B \in \mathbb{R}^{d \times n}
  \]

- Let $J(\hat{x}, \theta)$ be the solution of the linear system at $\hat{x}$ instead of $x^*(\theta)$

- Under regularity conditions on $\partial_1 F$ and $\partial_2 F$, we can show (Thm 1)
  \[
  \| J(\hat{x}, \theta) - J(x^*(\theta), \theta) \| = \| J(\hat{x}, \theta) - \partial x^*(\theta) \| < C \| \hat{x} - x^*(\theta) \|
  \]
  i.e., $J$ is Lipschitz

- We then apply this result to the (proximal) gradient descent fixed point under regularity conditions directly on $f$ and $\text{prox}_g$ (cf. corollaries 1 and 2)
Outline

1 Automatic differentiation
2 Argmin differentiation
3 Proposed framework
4 Experimental results
Hyperparam optim of multiclass SVMs

- Goal: find hyperparameters that perform well on validation data
- $x^*(\theta) \in \mathbb{R}^{m \times k}$: optimal dual variables
- $\theta \in \mathbb{R}_+$: regularization parameter

bi-level optimization problem

$$
\begin{align*}
\min_{\theta = \exp(\lambda)} & \quad \frac{1}{2} \|X_{\text{val}} W(x^*(\theta), \theta) - Y_{\text{val}}\|_F^2 \\
\text{s.t.} & \quad x^*(\theta) = \arg\min_{x \in C} \frac{\theta}{2} \|W(x, \theta)\|_F^2 + \langle x, Y_{\text{tr}} \rangle
\end{align*}
$$

where

$$
C := \bigtriangleup^k \times \ldots \bigtriangleup^k
$$

$$
W(x, \theta) := X_{\text{tr}}^\top(Y_{\text{tr}} - x)/\theta \in \mathbb{R}^{p \times k}
$$
Hyperparam optim of multiclass SVMs

![Graphs showing runtime per step for different algorithms and feature numbers.](image)

Mathieu Blondel
Efficient and Modular Implicit Differentiation
36 / 46
Hyperparam optim of multiclass SVMs

X_tr, Y_tr, X_val, Y_val = load_data()

def W(x, theta):  # dual-primal map
    return jnp.dot(X_tr.T, Y_tr - x) / theta

def f(x, theta):  # inner objective
    return 0.5 * theta * jnp.sum(W(x, theta) ** 2)

g = jax.grad(f)
proj = jax.vmap(projection_simplex)
def T(x, theta):
    return proj(x - g(x, theta))

@custom_fixed_point(T)
def msvm_dual_solver(theta):
    # [...]  
    return x_star  # solution of the dual objective

def outer_loss(lambd):
    theta = jnp.exp(lambd)
    x_star = msvm_dual_solver(theta)  # inner solution
    Y_pred = jnp.dot(W(x_star, theta), X_val)
    return 0.5 * jnp.sum((Y_pred - Y_val) ** 2)

print(jax.grad(outer_loss)(lambd))
Task-driven dictionary learning

- Goal: breast cancer survival prediction from gene expression data
- \( x^*(\theta) \in \mathbb{R}^{m \times k} \): sparse codes (atom weights for each sample)
- \( \theta \in \mathbb{R}^{k \times p} \): dictionary of \( k \) atoms
- bi-level optimization problem

\[
\min_{\theta \in \mathbb{R}^{k \times p}, w \in \mathbb{R}^k, b \in \mathbb{R}} \sigma(x^*(\theta)w + b; y_{tr}) \quad \text{s.t.} \quad x^*(\theta) \in \arg\min_{x \in \mathbb{R}^{m \times k}} f(x, \theta) + g(x)
\]

where

\[
f(x, \theta) := \ell(X_{tr}, x\theta) : \text{data reconstruction error}
\]

\( \sigma : \text{binary logistic loss} \)
Task-driven dictionary learning

<table>
<thead>
<tr>
<th>Method</th>
<th>$L_1$ logreg</th>
<th>$L_2$ logreg</th>
<th>DictL + $L_2$ logreg</th>
<th>Task-driven DictL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC (%)</td>
<td>71.6 ± 2.0</td>
<td>72.4 ± 2.8</td>
<td>68.3 ± 2.3</td>
<td>73.2 ± 2.1</td>
</tr>
</tbody>
</table>

- binary classification problem to discriminate patients who survive longer than 5 years ($m_1 = 200$) vs patients who die within 5 years of diagnosis ($m_0 = 99$) from $p = 1,000$ gene expression values

- Performs better than using the original features with 100 fewer variables
Task-driven dictionary learning

```python
X_tr, y_tr = load_data()

def f(x, theta): # dictionary loss
 residual = X_tr - jnp.dot(x, theta)
 return huber_loss(residual)

grad = jax.grad(f)
def T(x, theta): # proximal gradient fixed point
 return prox_lasso(x - grad(x, theta))

@custom_fixed_point(T)
def sparse_coding(theta): # inner objective
 # [...]
 return x_star # lasso solution

def outer_loss(theta, w): # task-driven loss
 x_star = sparse_coding(theta) # sparse codes
 y_pred = jnp.dot(x_star, w)
 return logloss(y_tr, y_pred)

print(jax.grad(outer_loss, argnums=(0,1)))
```
Dataset distillation

- Goal: learn a small “distilled” dataset such that a model trained on this data performs well on the original data
- \( x^*(\theta) \in \mathbb{R}^{p \times k} \): logistic regression weights
- \( \theta \in \mathbb{R}^{k \times p} \): distilled images (“class prototypes”)
- bi-level optimization problem

\[
\min_{\theta \in \mathbb{R}^{k \times p}} f(x^*(\theta), X_{tr}; y_{tr}) \quad \text{s.t.} \quad x^*(\theta) \in \arg\min_{x \in \mathbb{R}^{p \times k}} f(x, \theta; [k]) + \varepsilon \|x\|^2
\]

where

\[
f(W, X; y) := \ell(y, XW)\]

\(\ell\) : multiclass logistic loss
Dataset distillation (MNIST)

- Via implicit diff
  - Dataset Distillation (MNIST). Generalization Accuracy: 0.8556

- Via unrolling (4x slower)
  - Dataset Distillation (MNIST). Generalization Accuracy: 0.8556
Dataset distillation

```
X_tr, y_tr = load_data()

logloss = jax.vmap(loss.multiclass_logistic_loss)

def f(x, theta, l2reg=1e-3): # inner objective
 scores = jnp.dot(theta, x)
 distilled_labels = jnp.arange(10)
 penalty = l2reg * jnp.sum(x * x)
 return jnp.mean(logloss(distilled_labels, scores)) + penalty

F = jax.grad(f)

@custom_root(F)
def logreg_solver(theta):
 # [...]
 return x_star

def outer_loss(theta):
 x_star = logreg_solver(theta) # inner solution
 scores = jnp.dot(X_tr, x_star)
 return jnp.mean(logloss(y_tr, scores))

print(jax.grad(outer_loss)(theta))
```
Molecular dynamics

- Goal: sensitivity analysis of molecular dynamics
- \( x^*(\theta) \in \mathbb{R}^{k \times 2} \): coordinates of \( k \) particles
- \( \theta \in \mathbb{R}_+ \): diameter of small particles
- optimization problem

\[
x^*(\theta) = \arg\min_{x \in \mathbb{R}^{k \times m}} f(x, \theta) := \sum_{i,j} U(x_{i,j}, \theta)
\]

where \( U(x_{i,j}, \theta) \) is the pairwise potential energy function
Molecular dynamics: $\partial x^*(\theta) \in \mathbb{R}^{k \times 2}$
Conclusion

- A general framework combining implicit differentiation with autodiff of optimality conditions
- Flexibility to try out ideas easily
- Ability to add implicit differentiation on top of existing solvers
- Open-source release: coming soon!
- Thank you for your attention!