Google Research

Automatic differentiation
Mathieu Blondel

February 12, 2021

Gradient-based learning

m Gradient-based training algorithms are the workhorse of modern
machine learning.

m Deriving gradients by hand is tedious and error prone.
m This becomes quickly infeasible for complex models.
m Changes to the model require rederiving the gradient.

m Deep learning = GPU + data + autodiff

Mathieu Blondel Automatic differentiation

1/62

Automatic differentiation

m Evaluates the derivatives of a function at a given point.
= Not the same as numerical differentiation.

m Not the same as symbolic differentiation, which returns a
“‘human-readable” expression.

m In a neural network context, reverse autodiff is often known as
backpropagation.

Mathieu Blondel Automatic differentiation 2/62

Automatic differentiation

m A program is defined as the composition of primitive operations that
we know how to derive.

m The user can focus on the forward computation / model.
import jax.numpy as jnp
from jax import grad, jit

def predict(params, inputs):
for W, b in params:
outputs = jnp.dot(inputs, W) + b
inputs = jnp.tanh(outputs)
return outputs

def loss_fun(params, inputs, targets):
preds = predict(params, inputs)
return jnp.sum((preds - targets)**2)

grad_fun = jit(grad(loss_fun))

Mathieu Blondel Automatic differentiation 3/62

Automatic differentiation

m Modern frameworks support higher-order derivatives

def tanh(x):
y = jnp.exp(-2.0 * x)
return (1.0 - y) / (1.0 + y)

fp = grad(tanh)

fpp = grad(grad(tanh)) ‘

Mathieu Blondel Automatic differentiation

Outline

E} Numerical differentiation

Mathieu Blondel Automatic differentiation 5/62

Derivatives

m Definition of derivative of g: R — R

oa h—0 h

m g'(a) is called Lagrange notation.

= ‘9%(;) is called Leibniz notation.

m Interpretations: instantaneous rate of change of g, slope of the
tangent of g at a.

Mathieu Blondel Automatic differentiation

6/62

Gradient

m The gradient of f: R” — R is
Vi(x) = : eR”

i.e., a vector that gathers the partial derivatives of f.
m Applying the definition of derivative coordinate-wise:

of f(x + he;) — f(x)

[VI(x)]; = 8J(X)ZII7—>O h je{l,...,n}

where ; =[0,0,...,0, 1 ,0,...,0]" € {0,1}" is the /" standard
\',/
)
basis vector.

Mathieu Blondel Automatic differentiation 7162

Numerical gradient

m Finite difference:

of - f(x+cej) —f(x)

X) ~ jef{l,...,n}

VX)) = 5,) 2

where ¢ is a small value (e.g., 1076).

m Central finite difference:

VX)) = 38—,; X) ~ f(”sef)z_ef(x_gef) je{1,....n}

m Computing V£(x) approximately by (central) finite difference is
n+ 1 times (2ntimes) as costly as evaluating f.

Mathieu Blondel Automatic differentiation

8/62

Directional derivative

m Derivative of f: R" — R in the direction of v € R”

Dyf(x) = lim f(x + hv) — f(x)

eR
h—0 h

m Interpretation: rate of change of f in the direction of v, when moving
away from Xx.

m [V£(x)]; is the derivative in the direction of e;.
m Finite difference (and similarly for the central finite difference):

f(x 4+ ev) — f(x)

Dyf(x) ~ -

Only 2 calls to f are needed, i.e., independent of n.

Mathieu Blondel Automatic differentiation 9/62

Directional derivative

m Fact. The directional derivative is equal to the scalar product
between the gradient and v, i.e.,
Dyf(x) = VI(x) - v
m Proof. Let g(t) = f(x + tv). We have

g'(t) = im f("*(”h)x) — f(x+ tv)

and therefore g’(0) = Dy(x). By the chain rule, we also have
g (t) = Vix+tv)-v.

Hence, g'(0) = Dy(x) = V£(X) - v.

Mathieu Blondel Automatic differentiation 10/62

Jacobian

m The Jacobian of f: R?” — R™

ot . Ok
(9f X OXq OXn
o= T
Ofm .., Om
0X4 OXn
(oot
oxyT T Oxp
VAX) "
Vin(x) "

m The size of the Jacobian matrix is m x n.
m The gradient’s transpose is thus a “wide” Jacobian (m = 1).

Mathieu Blondel Automatic differentiation 11/62

Jacobian vector product (“JVP”)

= Right-multiply the Jacobian with a vector v € R”
(Vi (x)T
Ji(x)v = : v

| Vin(x)"
[Vfi(x)-v

| Vin(X)-v
—im f(x + hv) — f(x)
h—0 h

m Finite difference (and similarly for the central finite difference):
f(x + ev) — f(x)

9
m Computing the JVP approximately by (central) finite difference

requires only 2 calls to f.

Mathieu Blondel Automatic differentiation

J(X)V ~

12/62

Vector Jacobian Product (“VJP”)

m Left-multiply the Jacobian with a vector u € R

u'J(x)=u’ [o 8—f]

of of
ox1’ 7 Oxp

- [Ua,,ua—xn
m Finite difference (and similarly for the central finite difference):

of f(x+ce) —f(x)
8X,‘ - €

m Computing the VJP approximately by (central) finite difference
requires n+ 1 calls (2n calls) to f.

Mathieu Blondel Automatic differentiation

Outline

FJ Chain compositions

Mathieu Blondel Automatic differentiation 14/62

Chain rule

m Let F(x) =f(g(x)) = fog(x), where f,g: R — R. Then,
F'(x) = f(9(x))g'(x)
m Alternatively, let y = g(x) and z = f(y), then

0:_ozoy oz oy
ox 0y ox Oyly=g(x)0x

X=X
m Let f(x) = h(g(x)), where g: R” — R? and h: RY — R. Then,

VI(x) = (Vh(g(x))" Jg(x))" = Jg(x)" Vh(g(x))
nx1 1xd \(?x/: nxd axi

m and similarly using Leibniz notation

Mathieu Blondel Automatic differentiation 15/62

Chain compositions

X=Xy — {4 fo f3 fa o

m Assume f: R” — R™ decomposes as follows:

o =f(x)
=f4o0f30f0f(x)
= f4(f3(f2(f1(x))))

where f: R — R™ f5: R™ — R™, ... f4: R™ — R™,

m How to compute the Jacobian Jy(x) = g—;’ € R™*" efficiently?

Mathieu Blondel Automatic differentiation

Chain rule

X=Xy — f1 fg f3 f4

Xo X3 X4

m Sequence of operations

Xi =X
X2 = f1(x4)
X3 = f2(X2)
X4 = f3(X3)
0 = f4(X4)

m By the chain rule, we have
00 00 0X4 OX3 OX2

& B OX4 OX3 0Xo OX

_ 8f4(X4) 8f3(X3) 8f2(X2) of (X)

8)(4 8)(3 8X2 ox

=, (Xa)Jt, (X3) o, (X2) J, (%)

Mathieu Blondel Automatic differentiation

17 /62

Forward differentiation

= Recall that 88_;,- e R™ is the /1" column of J;(x).

m Jacobian vector product (JVP) with e; € R" extracts the j column

of
Ji(x)es = ox;
of
Ji(x)ez = 0%
of
m Computing a gradient (m = 1) requires n JVPs with eq, ..., ep.

Mathieu Blondel Automatic differentiation 18/62

Forward differentiation

m Jacobian-vector product with v € R”

Ji(X)V = Jh, (Xq) by (X3) g, (X2) o, (X)
e e e N N’

MXMg MgXmy Mpxmy myxn
Multiplication from right to left is more efficient.
m Cost of computing n JVPs:
n(mms + mgmo + momy + mqnN)
m Cost of computing a gradient (m =1, mg = mo = my = n):

o(n®)

Mathieu Blondel Automatic differentiation 19/62

Forward differentiation

mo=f(x)=fko---ofyofi(x)

m [h(X)].) = Jie (Xk) - - - i, (X2) ok, (X)) je{t,....n}

Algorithm 1 Compute o = f(x) and J;(x) alongside
1: Input: x € R"

X1 < X
j<—eeR" je{l,...,n}

: for k =11to K do

Xkr1 < Fi(Xk)

j(—Jfk(Xk) j j€{17"'7n}
: end for

O Noar Wb

: Returns: 0 = Xk 1, [h(X)].;=v; je{1,....n}

Mathieu Blondel Automatic differentiation 20/62

Backward differentiation

= Recall that Vfi(x)" € R” is the i row of J;(x).
= Vector Jacobian product (VJP) with e; € R” extracts the i row

e Ji(x) = VA (x)"
e Ji(x) = Vi(x)'

endi(x) = Vin(x)"

= Computing a gradient (m = 1) requires only 1 VJP with e; € R'.

Mathieu Blondel Automatic differentiation

21/62

Backward differentiation

m Vector Jacobian product with 11 € R™

T Uk, (Xa) Jty (X3) ok, (X2) I, (X)
e e N N’

MXMg MaXmy Mpxmy myxn
Multiplication from left to right is more efficient.
m Cost of computing m VJPs:
m(mms + mzmy + momy + myn)
m Cost of computing a gradient (m =1, mg = mo = my = n):

Oo(n?)

Mathieu Blondel Automatic differentiation 22/62

Backward differentiation

| O:f(X) :fKO---Of20f1(X)
| [Jf(X)],',: = e,-TJfK(xK) e Jf2(x2)Jf1 (X) i€ {1 ooy m}

Algorithm 2 Compute o = f(x) and J;(x)
1: Input: x ¢ R”
X1 X ui+eeR” je{l,....,m}

for k =1to Kdo

Xk+1 < fk(Xk)
end for

for k = Kto1do

Teuld(xk) ie{t,....m}

end for

© N o N

Returns: o = Xk 1, [k(X)];. = v ie{1,....m}

Mathieu Blondel Automatic differentiation 23/62

Feedforward networks

2 0 03 04
NN N N

X=Xy — f f f f o
| e 2 g B

m Each function can now have two arguments: fx(Xg,), where xy is
the previous output and 6y are learnable parameters.

m Example one hidden layer, one output layer, squared loss

f=1f,0.-..0f4
X = fi(x, Wy) = Wix Wi e R™*"
X3 = f2(Xz, 0) = relu(xz)
X4 = f3(X3, W3) = WsX3 Ws e]R1><m3
(

1
=fi(Xs,y) = §||X4—Y||2

Mathieu Blondel Automatic differentiation 24 /62

Feedforward network example

01 0> 03 04
\ N\ N\ N\

X=Xy — f f f f o
1 iy 2 g B e

m Applying the chain rule once again we have

0o
00,4
do 00 Ox4
903 Ox4 003

0o 00 Ox4 OX3

3_92 N OX4 8X3 005

m Apart from the last multiplication, the Jacobians 92 .- and gg’ share
the same computations!

Mathieu Blondel Automatic differentiation 25/62

Backprop for feedforward networks

Algorithm 3 Compute o = f(x, 6, ..

.,0k) and its Jacobians.

1:

—_

TP NGO RWODN

Input: x € R”, 64,...,0k

X1 < X

i< e eRM™ je{l,
for k =11t0 K do

Xkt < Fu(Xk, Ok)
end for
fork=Kto1do

i v Sl

[e uf St

end for

Returns: o = xx.1, [22]

i

.., m}

e{1,...,m}

ie{1,...,m}

=l [B] =k ie i my ke {1, K}

Mathieu Blondel

Automatic differentiation

26/ 62

Examples of VJPs

Let W € R&P ¢y € R2, x € RP.
m f(x) = g(x) (element-wise)
m f maps R? to R?
B Ji(x) = Ji(x)T = diag(g’(x)) maps RP to R?, i.e., b x b matrix

B U dh(x) = k(x)Tu = uxg(x) € RP, where x means element-wise
multiplication

m f(x) = Wx
m f maps R? to R?2
® Ji(x) = W maps R to R?, i.e., @ x b matrix
® Ji(x)T = WT maps R?to R?, i.e., b x a matrix
BuTh(x)=k(X)Tu=WTueRP

Mathieu Blondel Automatic differentiation 27/62

Examples of VJPs

m f(W) = Wx
m f maps R?*% to R?

® Ji(W) maps R¥P to R?, i.e., a x (a x b) matrix
m J(W)T maps R? to R?*Y, j.e., (a x b) x a matrix

B h(W)Tu=ux"

VJPs make things easier when dealing with matrix or tensor inputs.

Mathieu Blondel Automatic differentiation 28/62

Summary: Forward vs. Backward

m Forward
m Uses Jacobian vector products (JVPs)

m Each JVP call builds one column of the Jacobian
m Efficient for tall Jacobians (m > n)
m Need not store intermediate computations
m Backward
m Uses vector Jacobian products (VJPs)
m Each VJP call builds one row of the Jacobian
m Efficient for wide matrices (m < n)

m Needs to store intermediate computations

Mathieu Blondel Automatic differentiation 29/62

Machine learning use case

m Most objectives in machine learning can be written in the form

min f(x) = Zﬁ (fi(x))

where f: R” — RM and ¢;: RM — R.
m The minimization needs to be w.r.t. a scalar valued loss.

m This corresponds to the m = 1 setting, for which backward
differentiation is more efficient.

m This explains the immense success of reverse autodiff in machine
learning.

Mathieu Blondel Automatic differentiation 30/62

Outline

E] Computational graphs

Mathieu Blondel Automatic differentiation 31/62

Computational graph

f(X1,X2) = X0€"1\/ X1 + Xo €1
m Operations in topological order
X3 = f(x) = "
X4 = f4(X2, X3) = XoX3
X5 = f5(X1,Xa) = X1 + Xa
X6 = fo(xs5) = /X5
(

X7 = fr(X4, X6) = XaXe

m Directed acyclic graph traversal

T T

b b b
A
Xp ———— Iy -

Mathieu Blondel Automatic differentiation 32/62

X7

Forward differentiation example

T

X1—>f3 f5x—>f6x—6>f7 — X7 =20

5
A+
Xp ————— Iy %,

m X4 is influenced by x3 and X,, therefore
0%y _ O%a 0%s 0% 0%
OX1 N OX3 OX4 OXo OX4
m X7 is influenced by x4 and xg, therefore
OX1 N OX4 OX4 OXg OX4

Mathieu Blondel Automatic differentiation

33/62

Forward differentiation example

Xy —{ f3 fs —i fg — f; - X7=0

X5 Xg
N %/
Xo —— | f4
X4

m Recurse in topological order

8X1 .

Fr Idn

8X2 o

e Ids

% _ 0% 0%
0X4 - OX1 OX4

X _ 0% 0% | 0% 0%
OX4 N OX3 0X4 OX2 OX4

m Everything can be computed in terms of JVPs

Mathieu Blondel Automatic differentiation 34 /62

Forward differentiation

parents children

m In the general case, we have

Piooy 0w
15).8 N . - OX; OX4
ieParents(j)

o . : :
m 5! is easy to compute as f; is a direct function of x;.
1

] g—)’(‘: is obtained from the previous iterations in topological order.

Mathieu Blondel Automatic differentiation 35/62

Backward differentiation example

X1 ——| 3 fs — fg — 7 —X7=0
Xs Xs
Xﬁa U
Xo — 5/ f
2 4 %,

m X5 influences only Xxg, therefore

0o 8_0 OXg

OXs OXg OXs
m X, influences x5 and x7, therefore

90 _ 90 ixs | 90 s

0X, OXs50Xq = OX7 OX4

Mathieu Blondel Automatic differentiation

36/62

Backward differentiation example

Xy — f3

f5 —) fo —) fz - Xx7=0

m Recurse in reverse topological order

0o
8X7

0 _
6X5 -
do

8X5

o0 _
6X4 -

(9X7

= % = ldm

00 OX7

0%7 OXs

0o 8X6

(9X6 5'X5

00 OXs = 00 OX7

OXs OXy ' OX7 OX4

m Everything can be computed in terms of VJPs

Mathieu Blondel Automatic differentiation

Backward differentiation

parents children

m In the general case, we have

% _ 20 0%
" kecChidren(j) Xy 0%
[| g—,& is obtained from previous iterations (reverse topological order)
and is known as “adjoint”.

] % is easy to compute as fx is a direct function of ;.
J

Mathieu Blondel Automatic differentiation 38/62

Outline

1 Implementation

Mathieu Blondel Automatic differentiation 39/62

Obtaining the computational graph

m Ahead of time
m Read from source or abstract syntax tree (AST). Ex: Tangent.

m API for composing primitive operations (the graph is fully built before
the program is evaluated). Ex: Tensorflow.

m Justintime
m Tracing: monitor the program execution (the graph is built while the
program is being executed). Ex: Tensorflow Eager, JAX, PyTorch.
import jax.numpy as jnp
from jax import grad

def add(a, b):
return a + b

a = jnp.array([1, 2, 31)
b = jnp.array([4, 5, 61)
print(grad(add) (a, b))

Mathieu Blondel Automatic differentiation 40/62

https://github.com/google/tangent
https://github.com/google/jax

Key components of an implementation

m VJP for all primitive operations
m Node class

m Topological sort

m Forward pass

m Backward pass

We will now briefly review each component using a rudimentary
implementation (link to code).

Mathieu Blondel Automatic differentiation 41/62

https://github.com/mblondel/teaching/tree/main/autodiff-2020

VJPs for primitive operations

def dot(x, W):
return np.dot (W, x)

def dot_make_vjp(x, W):
def vjp(u):
return W.T.dot(u), np.outer(u, x)
return vjp

dot.make_vjp = dot_make_vjp

def add(a, b):
return a + b

def add_make_vjp(a, b):
gprime = np.ones(len(a))

def vjip(u):
return u * gprime, u * gprime

return vjp
add.make_vjp = add_make_vjp

Mathieu Blondel Automatic differentiation 42 /62

Node class

class Node(object):

def __init__(self, value=None, func=None, parents=None, name="")
Value stored in the mode.
self.value = value
Function producing the node.
self.func = func
Inputs to the function.
self .parents = [] if parents is None else parents
Unique name of the node (for debugging and hashing).
self .name = name
Gradient / Jacobian.
self.grad = 0
if not name:
raise ValueError("Each node must have a unique name.")

def __hash__(self):
return hash(self.name)

def __repr__(self):
return "Node(7s)" % self.name

Mathieu Blondel Automatic differentiation 43 /62

DAG

Xy — f 15—>1 —>f7—>X7—0
3 6

N
Xp ——— f4

def create_dag(x):

x1
x2

x3 =
x4 =

x5
x6

X7 =

Node (value=np.array([x[0]]), name="x1")
Node (value=np.array([x[1]]), name="x2")
Node (func=exp, parents=[x1], name="x3")
Node (func=mul, parents=[x2, x3], name="x4")
Node(func=add, parents=[x1, x4], name="x5")
Node (func=sqrt, parents=[x5], name="x6")
Node (func=mul, parents=[x4, x6], name="x7")

return x7

A good implementation would support tracing, instead of building the
DAG manually.

Mathieu Blondel Automatic differentiation

44/ 62

Topological sort

def dfs(node, visited):
visited.add(node)
for parent in node.parents:
if not parent in visited:
Yield parent nodes first.
yield from dfs(parent, visited)
And current node later.
yield node

def topological_sort(end_node):
visited = set()
sorted_nodes = []

All non-vistited nodes reachable from end_node.
for node in dfs(end_node, visited):

sorted_nodes. append (node)

return sorted_nodes

Mathieu Blondel Automatic differentiation

Forward pass

def evaluate_dag(sorted_nodes):
for node in sorted_nodes:
if node.value is None:
values = [p.value for p in node.parents]
node.value = node.func(*values)
return sorted_nodes[-1].value

Mathieu Blondel Automatic differentiation 46 /62

Backward pass

def backward_diff_dag(sorted_nodes):
value = evaluate_dag(sorted_nodes)
m = value.shape[0] # Output size

parents

’

Initialize recursion.
sorted_nodes[-1].grad = np.eye(m)

\5
x
>

for node_k in reversed(sorted_nodes):
if not node_k.parents:
We reached a node without parents.
continue

Values of the parent nodes.
values = [p.value for p in node_k.parents]

Iterate over outputs.

for i in range(m):
A list of size len(values) containing the vjps.
vjps = node_k.func.make_vjp(*values) (node_k.grad[i])

for node_j, vjp in zip(node_k.parents, vjps):
node_j.grad += vjp

return sorted_nodes

Mathieu Blondel Automatic differ

CheCkPOi nti ng (best seen in presentation mode)

m During the forward pass, save computations at intermediate

locations only (checkpoints).

m During the backward pass, recompute other locations on the fly,

starting from the checkpoints.

m Tradeoff between memory and computation time.

CheCkPOi nti ng (best seen in presentation mode)

m During the forward pass, save computations at intermediate

locations only (checkpoints).

m During the backward pass, recompute other locations on the fly,

starting from the checkpoints.

m Tradeoff between memory and computation time.

CheCkPOi nti ng (best seen in presentation mode)

m During the forward pass, save computations at intermediate

locations only (checkpoints).

m During the backward pass, recompute other locations on the fly,

starting from the checkpoints.

m Tradeoff between memory and computation time.

CheCkPOi nti ng (best seen in presentation mode)

m During the forward pass, save computations at intermediate
locations only (checkpoints).

m During the backward pass, recompute other locations on the fly,
starting from the checkpoints.

m Tradeoff between memory and computation time.

CheCkPOi nti ng (best seen in presentation mode)

m During the forward pass, save computations at intermediate
locations only (checkpoints).

m During the backward pass, recompute other locations on the fly,
starting from the checkpoints.

m Tradeoff between memory and computation time.

CheCkPOi nti ng (best seen in presentation mode)

m During the forward pass, save computations at intermediate
locations only (checkpoints).

m During the backward pass, recompute other locations on the fly,
starting from the checkpoints.

m Tradeoff between memory and computation time.

CheCkPOi nti ng (best seen in presentation mode)

m During the forward pass, save computations at intermediate
locations only (checkpoints).

m During the backward pass, recompute other locations on the fly,
starting from the checkpoints.

m Tradeoff between memory and computation time.

CheCkPOi nti ng (best seen in presentation mode)

m During the forward pass, save computations at intermediate
locations only (checkpoints).

m During the backward pass, recompute other locations on the fly,
starting from the checkpoints.

m Tradeoff between memory and computation time.

CheCpri ntl ng (best seen in presentation mode)

m During the forward pass, save computations at intermediate
locations only (checkpoints).

m During the backward pass, recompute other locations on the fly,
starting from the checkpoints.

m Tradeoff between memory and computation time.

Mathieu Blondel Automatic differentiation 48 /62

JAX

= NumPy and SciPy compatible

m Automatic differentiation (grad)

m Just-in-time compilation (jit)

m Automatic vectorization (vmap)

m Code transformations are composable
m Actively developed by Google

m Gaining a lot of popularity among ML and science researchers

Mathieu Blondel Automatic differentiation 49/62

Outline

3 Advanced topics

Mathieu Blondel Automatic differentiation 50/ 62

Hessian

m The matrix gathering second-order derivatives

[O°f O0?f o Pf]
ox2 0x1 OXo 0xy OXn
Of 02 f o Of
2 _ Oxo OXq Ox2 OXo OXn
et et o
[OXn OX1 OXn OX2 oxz |

m Hessian vector product = gradient of directional derivative

V2f(x)v = V(VF(x) - v)

m JAX supports fully closed tracing: we can “trace through tracing”

Mathieu Blondel Automatic differentiation

51/62

Recovering JVPs from VJPs

= Suppose we already have a VJP routine for computing v " Ji(x)
m By linearity we have

% — Jf(x)T

m and therefore

ou T (%)

S VTH)T = (400W)T

VT

m The VJP w.r.t. u of the VJP w.r.t. x is equal to the transopose of the
JVP w.r.t. x.

m The trick does not work in the other direction!

Mathieu Blondel Automatic differentiation 52/62

Differentiating min problems

m Consider the function
f(0) = mXin E(x,0) = E(x*(0),0)
m From Danskin’s theorem (a.k.a. envelope theorem)
V£(0) = Va2 E(x*(6),0)
where V5 indicates the gradient w.r.t. the second argument.

m Informally, the theorem says that we can treat x*(¢) as if it did not
depend on 6.

Mathieu Blondel Automatic differentiation 53/62

Differentiating argmin problems

m Now, consider the function
x*(0) = argmin E(x, 6)
f(0) = L(XX*(H), 0)
m By the chain rule, we have
VE(8) = (J X*(6)) T V1L(x*(6),6) + VaL(x*(6),6)

= How to compute J x*(§) = 2(0)7

Mathieu Blondel Automatic differentiation

Fixed points

m Consider the following fixed point iteration
x*(0) = g(x*(0),0) & h(x*(0),0) =0
where h(x,6) = x — g(x,0)
m By the implicit function theorem
J X*(6) = —(d1h(x*(9),6)) " Jh(x*(6),6)

where J; and J, are the Jacobians w.r.t. the 1st and 2nd variables

Mathieu Blondel Automatic differentiation 55/62

Differentiating argmin problems

m Recall that
x*(0) = argmin E(x, 0)
X

m We have the fixed point iteration (gradient descent)
x*(0) = x*(0) — V1E(x*(0),0)
m Choosing h(x,0) = V1E(x,0), we get

J x*(0) = —(HV1E(x*(0),0)) " V1E(x*(6),6)
= ~(VRE(x*(6),0)) " V1 E(x*().0)

m In practice, we need to replace x*() by an approximate solution.

Mathieu Blondel Automatic differentiation 56 / 62

Differentiating argmin problems

m Example: hyper-parameter optimization for ridge regression

E(x.0) = lAx — bl + 2 |x|P €
V1E(x,0) = AT(Ax — b) + 6x € RY
V2E(x,0) = ATA+ 0l ¢ R9¥?

JHV1E(x,0) = x € RI!
)

m J x*(0) is therefore obtained by solving the following linear system

(ATA+0N[J x*(8)] = —x*(0)

Mathieu Blondel Automatic differentiation

57 /62

Differentiating argmin problems

m An alternative idea to obtain J x*(0) is to to backpropagate through
gradient descent:

x1(0) = x'(6) — nV1E(x'(6),6)
m No longer needs to solve a linear system...
= ...but needs to store intermediate iterates x!(#) or checkpoints
m Possibility to use truncated backpropagation

m Possibility to use reversible dynamics in some cases

Mathieu Blondel Automatic differentiation 58/ 62

https://arxiv.org/abs/1810.10667
https://arxiv.org/abs/1502.03492

Inference in graphical models

m Gibbs distribution
P(Y = y;0) < exp(y - 0)
where y € Y € {0,1}"
m Log-partition function
f(6) =log > exp(y - 0)
yey

m Fact.
(P(Y; = 1:0))7y = E[Y] = V£(9)

m If we know how to compute f(6), we can get expectations /
marginal probabilities by autodiff! Recovers forward-backward
algorithms as special case. For a proof, see e.g. this paper.

Mathieu Blondel Automatic differentiation

59/62

https://arxiv.org/abs/1802.03676

Outline

[Conclusion

Mathieu Blondel Automatic differentiation

Summary
m Automatic differentiation is one of the keys that enabled the deep
learnnig “revolution”.

m Backward / reverse differentiation is more efficient when the
function has more inputs than outputs.

m Which is the de-facto setting in machine learning!

m Even if you use Tensorflow / JAX / PyTorch, implementing a
rudimentary autodiff library is a very good exercise.

Mathieu Blondel Automatic differentiation

References

The following tutorials have been a great inspiration:

m Automatic Differentiation, Matthew Johnson, Deep Learning
Summer School Montreal, 2017.

m Differential programming, Gabriel Peyré, Mathematical Coffees,
2018.

Two minimalist implementations of autodiff:

m Autodidact, by Matthew Johnson.

m Micrograd, by Andrej Karpathy.

Mathieu Blondel Automatic differentiation 62/62

https://github.com/mattjj/autodidact
https://github.com/karpathy/micrograd

	Numerical differentiation
	Chain compositions
	Computational graphs
	Implementation
	Advanced topics
	Conclusion

