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Measuring progress

m How to measure the progress made by an iterative algorithm for
solving an optimization problem?

x* = argmin f(x)
XEX

m Non-negative error measure
E[:HXt—X*H or Et:f(Xt)—f(X*)
m Progress ratio

m An algorithm makes strict progress on iteration ¢ if p; € [0, 1).
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Types of convergence rates

m Asymptotic convergence rate
lim py = p
t—o0
i.e., the sequence p1, po, p3, ... converges to p

m Sublinear rate: p = 1. The longer the algorithm runs, the slower it
makes progress! (the algorithm decelerates over time)

m Linear rate: p € (0,1). The algorithm eventually reaches a state of
constant progress.

m Superlinear rate: p = 0. The longer the algorithm runs, the faster it
makes progress! (the algorithm accelerates over time)
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Sublinear rates

m Error at iteration E;, number of iterations to reach =-error T.

1 1
1 1
5-0() = -0 (3)

“o(})<7-o(!)

ex: gradient descent for smooth but not strongly-convex functions

mb=2
o-o(3)er-o(3)

ex: Nesterov’s method for smooth but not strongly-convex functions
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Linear rates

m The iteration number t now appears in the exponent
Ei=0(") pe(0,1)
m Example:

Ei=0(e)eT.=0 <Iog %)

m “Linear rate” is kind of a misnomer: E; is decreasing exponentially
fast! On the other hand, log E; is decreasing linearly.

m Ex: gradient descent on smooth and strongly convex functions
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Superlinear rates

m We can further classify the order q of convergence rates

lim L —
t=oo (Ep—1)9

m Superlinear (g =1, M =0)
1/k
E-0(e")eT.=0 (Iog 1)
g
m Quadratic (g = 2)

Ei=0 (e‘2t> sT.=0 (Iog log %)
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Coordinate descent

m Minimize only one variable per iteration, keeping all others fixed
m Well-suited if the one-variable sub-problem is easy to solve

m Cheap iteration cost

m Easy to implement

m No need for step size tuning

m State-of-the-art on the lasso, SVM dual, (non-negative) matrix
factorization

m Block coordinate descent: minimize only a block of variables
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Coordinate-wise minimizer
m A point is called coordinate-wise minimizer of f if f is minimized
along all coordinates separately
f(x+dg)>f(x) YeR,je{l,...,d}

m Does the coordinate-wise minimizer coincide with the global
minimizer?

m f convex and differentiable: yes
Vix)=0& Vif(x)=0 je{l1,...,d}

m f convex but non-differentiable: not always. Coordinate descent
can get stuck

m f(x)=g(x)+ 2721 hi(x;) where g is differentiable but h; is not: yes
0 € 9f(x) & —V;9(x) € Ohi(x;) je{1,...,d}
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Coordinate descent

m On each iteration ¢, pick a coordinate j; € {1,...,d} and minimize
(approximately) this coordinate while keeping others fixed

; t oyt t t
Min f(Xy, X, -5 X5 s Xg_1, Xg)
It

m Coordinate selection strategies: random, cyclic, shuffled cyclic.

m Coordinate descent with exact updates: requires an “oracle” to
solve the sub-problem

m Coordinate gradient descent: only requires first-order information
(and sometimes a prox operator)
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Coordinate descent with exact updates

m Suppose f is a quadratic function. Then

f(x + dey) = f(X) + V;f(x)d + = i v2f( X)

®m Minimizing w.r.t. §, we get

_Vé'f(X) <:>X/ <—X/’— Vé'f(X)
VEf(x) V5f(x)

*

m Example: f(x) = 3[|Ax — b||3 + 3|x][3

Vix)=AT(Ax—b)+Ax = Vf(x)=Al(Ax - b)+ \x

V2f(x)=ATA+ Al = v2( x)=|A 5+
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Coordinate descent with exact updates

m Computing Vf(x) for gradient descent costs O(nd) time

m Let us maintain the residual vector r = Ax — b € R"

= When x; is updated, synchronizing r takes O(n) time

= When r in synchronized, we can compute V;f(x) in O(n) time

m The second derivatives V]?jf(x) can be pre-computed ahead of time,
since it does not depend on x

m Doing a pass on all d coordinates therefore takes O(nd) time, just
like one iteration of gradient descent
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Coordinate descent with exact updates

m If f(x) = g(x) + I, B(x;) and g is quadratic, then
2,
f(x +0€j) = 9(x) + V;g(x)d + Evj-j-g(x) + hi(x; +6)

m The closed form solution is

0 =prox_,_, (x- V,-g(x)) — X

v21(x) i\ V]?jg(x)

where we used the proximity operator
1
prox..p, (u) = argmin Su— V)2 + 7hi(v)

m If hj = |- |, then prox is the soft-thresholding operator.

m State-of-the-art for solving the lasso!

Mathieu Blondel Beyond gradient descent

15/47



Coordinate gradient descent

m If fis not quadratic, there typically does not exist a closed form
m If V;f(x) is Lj-Lipschitz-continuous, recall that V5f(x) < L;

= Key idea: replace Vif(x) with L, i.e.,

Xj < Xj — Vif(x)
T VR(x)
becomes
ij(X)
Xf — X/ - L
|

m Each L; is coordinate-specific (easier to derive and tighter than a
global constant L)

m Convergence: O(1/¢) under Lipschitz gradient and O(log(1/<))
under strong convexity (random or cyclic selection)
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Coordinate gradient descent with prox

m Similarly, we can replace

Xj <= Prox_ (x,—m>

V2g(x) ! V;Q(X)
with Vi9(x)
jIX

X prox, (Xi --I )

where VZg(x) < L; for all x

m Can be used for instance for L;-regularized logistic regression

m If hi(x;) = Ie;(x;), where C; is a convex set, then the prox becomes

the projection onto C;.
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Implementation techniques

m Synchronize “statistics” (e.g. residuals) upon each update
m Column-major format: Fortran-style array or sparse CSC matrix
m Regularization path and warm-start

AM>A>> Ay

Since CD converges faster with big A, start from A1, use solution to
warme-start (initialize) Ao, etc.

m Active set, safe screening: use optimality conditions to safely
discard coordinates that are guaranteed to be 0
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Newton’s method for root finding

m Given a function g, find x such that g(x) =0
m Such x is called a root of g
= Newton’s method in one dimension:

KT =yt g(x’)
g'(x")

m Newton’s method in d dimensions:

Xt—|—1 — Xt _ Jg(xt)—1g(xt)
where Jy(x!) € R99 is the Jacobian matrix of g: RY — RY

m The method may fail to converge to a root

Mathieu Blondel Beyond gradient descent 20/ 47



Newton’s method for optimization

m If we want to minimize f, we can set g = f' or g = Vf
m Newton’s method in one dimension:

f'(x")
t+1 ot
X =X f”(Xt)

m Newton’s method in d dimensions:

Xt+1 — Xt _ v2f(xt)f1vf(xt)
dt

m In practice, once solves the linear system of equations
V2f(x')d! = VF(x)

m If f is non-convex, V2f(x!) is indefinite (i.e., not psd)
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Line search

m If fis a quadratic, Newton’s method converges in one iteration
m Otherwise, Newton’s method may not converge, even if f is convex
m Solution: use a step size

xtH = xt gt

m Backiracking line search: decrease n! geometrically until n!a!
satisfies some conditions

m Examples: Armijo rule, strong Wolfe conditions

m Superlinear local convergence
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Trust region methods

m Newton’s method
Xt—|—1 — Xt _ v2f(xt)—1vf(xt)
at

is equivalent to solving a quadratic approximation of f around x!
—d' = argcsnin f(xH) + VixHTd + %dTVZf(xt)d
m Trust region method: add a ball constraint
—d' = arg(;nin f(x’)+Vf(xt)Td+%dTVZf(xt)d st |d|z <o

m If x! — d! increases f, reject the solution and decrease 6!

m Similar convergence guarantees as line search methods
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Hessian-free method

m If d (number of dimensions) is large, computing the Hessian matrix
is expensive

m The conjugate gradient (CG) method can be used to solve Ax = b
m It only requires to know how to multiply with A, not A directly
= Since A = V?f(x!), we need to multiply with the Hessian

m This can be done in a number of ways: manual derivation, finite
difference, autodiff (cf. autodiff lecture)

m The resulting algorithm (with line search) is called Newton-CG
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Sub-sampled Hessians

= In machine learning, f is often an average (finite expectation)

f(x) = %; (x)

= On iteration t we can sub-sample a set St C {1,
unbiased estimates of the gradient and Hessian

1
VH(x) ~ o > vii(xh)
ieSt

’
V2f(x) ~ &l > VEh(xY)

ieSt

m Can be combined with Hessian-free method
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Quasi-Newton methods

m BFGS: replaces
Xt—|—1 — Xt _ v2f(xt)—1vf(xt)
with
Xt+1 _ Xt o Htvf(xt)

where H*1 =~ V(xt*1)~" is built incrementally from H’,
dl = x*1 — xtand vt = VF(x™*") — Vf(x!) using the so-called
secant equation

m L-BFGS: keep a history of only m pairs (d?, v!) and compute
H!Vf(x!) on the fly without materializing H' in memory

m Local superlinear convergence rate

m One of the go-to algorithms in machine learning!
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Projected gradient descent

m Consider the constrained optimization problem

mp

where f is L-smooth convex and C is a closed convex set

m Projected gradient descent

xH = p, (xt - 1sz(x’))

where
Pc(x) = argmin ||x — y|3
yeC

is the projection of x onto C
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Projected gradient descent

m Recall that gradient descent’s update can be seen as solving a
(crude) local quadratic approximation of f around x!

X = xt—lvf(xt) = argmin f(xt)+Vf(xt)T(x—x’)+é (x = xHTI(x — xh

L xXERY

[1x—x||3
m Similarly
X = Pe(x' — %Vf(x’)) = Pcargmin f(x") + VA(x") T (x — x") + I§'||x —x'|3
xeRd

= argmin f(x") + VF(x") T (x — x") + éHx —x"||5
xeC
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Frank-Wolfe

m A method for constrained optimization
m Based on a linear approximation instead of a quadratic one

m Projection free: a linear minimization oracle (LMO) is needed
instead

m LMOs are typically cheaper to compute than projections

m Also known as conditional gradient method (not to be confused with
conjugate gradient method)
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Frank-Wolfe

= Initialize x° € C
m Forte {0,1,2,...}
s = argmin f(x') + VA(x))T (s — x!) = argmin Vf(x!) " s

seC seC
2

t+1 Byt ot t
X =1-9) S = —

(1T=7)x +~ 7 =5
m argming.. g ' s is called linear minimization oracle (LMO)

m C needs to be compact (closed and bounded), otherwise the LMO
problem is not feasible (solution goes to infinity)

m How to compute the LMO?
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Convex hulls

m Probability simplex

m
AM={peR™ Y p=1,p=0ic{1,...,m}}
i=1

m v is a convex combination of {vy, ..., v} if

m
V= Zp,-v,- for some p e A"

i=1

m The convex hull of S is the set of all convex combinations of S

m
conv(S) = {Zp,v;: meN;pec A™ vy, ..., Vp GS}

i=1
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Convex polytopes

m A convex polytope is the convex hull of its vertices V = {vq,..., v}
C = conv(V)

m Example 1: Probability simplex

V

A™ =conv({ey,...,em})
m Example 2: L¢-ball
O™ = {x:[Ix|ly <1} = conv({*ex,...,=em})

m Example 3: L..-ball

O7 = {x: ||X|leo <1} =conv({—1,1}")
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Linear minimization oracles

m If C =conv(V)where V = {vq,...,vpn} then

argming's C V
seC

m Example 1: Probability simplex

e cargming's i€ argming;
seAm j

m Example 2: Li-ball

sign(—g;)e; € argming's i € argmax|gj|
seom j

m Example 3: L-ball

sign(—g) € argming's
sem
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Example: sparse regression

m Consider the objective

, 1
min f(w) = S|Xw -3 Vi(w) = X (Xw - y)

Iwlli<r
® Initialize w® =0
m Forte{0,1,2,...}
g = Vi(w')

i € argmax|gj|
j
s =7 -sign(gi)e
2
H1 (1 — Ayt t t_
w (A= +9's v =5+
m Pick a coordinate greedily and update it!

m Sparse solution: w! contains at most t non-zero elements
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Norm constraints

m Consider the case of norm constraints C = {x € RY: ||x|| < 7}
m Note that
scargming’ x = 7-argmax—g' x
lIxlI<r [Ix]I<1

m Recall the definition of dual norm

.
= max X
Il = max xTy

m Thus, up to the factor 7, s is the argument achieving the maximum
in the dual norm

m We saw (last lecture) that this coincides with the subdifferential
m Therefore, s € 7- 9| — g||«

m Example 3 (last slide): sign(—g) € 9|| — 9||1
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Frank-Wolfe variants

m Vanilla FW has a slow sublinear rate
fixh) — f(x*) < O (%)

m Variants of FW that enjoy a linear rate of convergence exist under
strong convexity assumptions on f

f(x) = f(x) <O (o) pe(0,1)
m Full-corrective FW
= Away-steps FW

m Pairwise FW
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Bregman divergences

m The Bregman divergence generated by ¢ between u and v is
D,(u,v) = p(u) — ¢(v) = (Vp(v),u—v)

m It is the difference between ¢(u) and its linearization around v.

¢(u)

D, (u,v)
P(0) + (Vo (v), u — )

/ v u

m Examples: p(x) = %||x||§ (squared Euclidean), ¢(x) = x " log(x)

(Kullback-Leibler)
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Bregman projections

m Euclidean projection

Pe(x) = argmin ||y — x||3
yec

m Bregman projection onto C C dom(yp)

PZ(x) = argmin D,(y, x)
yeC

m Recovers Euclidean projections as a special case
m Example: ¢(x) = x " log(x)

P (x) = argminKL(y,x)  x €R%,C CRY
yec
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Mirror descent

m Projected gradient descent

X = Pe(x' — 'VE(x")) = Pcargmin f(x") + VA(x") T (x — x") + zint”x — x5

x€RI

= argmin f(x") + VF(x") " (x — x") + Lt||x - x'|5
xec 2’/]

m Mirror descent

X" = P argmin f(x") + VA(x") T (x — x") + l,Dga(X, x)
x€RI n

= argmin f(x") + VA(x") " (x — x") + lth,(x, x")
xeC n

# PE(x" —n'Vf(x")) (in general)
Lf *

\/»f), where || V£(x)||. < Ly, for all x when

m Convergence rate is O(

wsna = 0[5
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Example: optimization over the simplex

m If p(x) = x " log(x) and C = A9, then we have a closed form

i1 X' exp(=mVi(x)
S Ly xtexp(—neVjf(x1))

(the operations in the numerator are element-wise)

m Often called exponentiated gradient descent or entropic descent

m The KL case, for which || - || =/ - ||y and || - [|« = || - |0, €NjOYS
better convergence rate than the Euclidean case on the simplex

= Indeed, using [|glls < llgll2 < Vd||g|lc, we get

<l g
Lio

Q-
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Alternative view

m On iteration ¢

X' =Vep(x!)  map primal point to dual
g =% —q!Vf(x')  take gradient step in the dual
yH = Ver(p™')  map new dual point back to primal
x = P2(y™1)  project onto feasible set

m Vo and Vy* are called mirror maps

m Under technical assumptions on ¢ called “Legendre-type” (¢ strictly
convex, Vi = oo on the boundary of dom(y)), we have

Ve = (V)
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Summary

m Convergence rates: important to familarize yourself with their
classification

m Coordinate descent: ideal when regularizers or constraints are
decomposable

m Newton’s method: the Newton-CG algorithm (Hessian-free) is
popularly used

m Frank-Wolfe: projection-free constrained optimization

m Mirror descent: generalization of projected gradient descent to
non-Euclidean geometries
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Lab work

m Recall that the dual of multiclass SVMs consists in maximizing
Z[ﬂ Bi) =yl - A||XT(Y— BIE st pient

where X € R™¢ (features) Y € R™k (one-hot labels),
Q(5;)) = —(Bi,1 — yi), A > 0 (regularization parameter)

m The primal-dual link is W* = IXT(Y — g*) € RO*k
m The gradient VD(3) € R"*k has rows as follows:
1
ViD() = =VQ(i) + X (X (Y - B)) € R
—_———

w
where VQ(3i) = yi — 1
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Lab work

m We want to minimize f(8) = —D(8), where V{(3) = —VD(3)

m Implement Frank-Wolfe for this problem.
m Initialize B2 € AKX, e.g., B = (1/k,...,1/k),forie {1,...,n}

m Forte {0,1,2,...}
G = V(B! e R™K

si=argmings; ic{1,...,n}
S,'EAK
2
1 (1 — A0t At t_
B (=705 +7S v =5

m Implement mirror descent for this problem using the KL geometry.

Blexp(—niVif(5")) :
gt = I ie{l,....n
Z;{:1 Blrexp(=neVi,f(8Y)) { }
using n; = n/+/t for some 7 € (0, 1]
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