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Measuring progress

How to measure the progress made by an iterative algorithm for
solving an optimization problem?

x? = argmin
x∈X

f (x)

Non-negative error measure

Et = ||xt − x?|| or Et = f (xt )− f (x?)

Progress ratio

ρt =
Et

Et−1

An algorithm makes strict progress on iteration t if ρt ∈ [0,1).
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Types of convergence rates

Asymptotic convergence rate

lim
t→∞

ρt = ρ

i.e., the sequence ρ1, ρ2, ρ3, . . . converges to ρ

Sublinear rate: ρ = 1. The longer the algorithm runs, the slower it
makes progress! (the algorithm decelerates over time)

Linear rate: ρ ∈ (0,1). The algorithm eventually reaches a state of
constant progress.

Superlinear rate: ρ = 0. The longer the algorithm runs, the faster it
makes progress! (the algorithm accelerates over time)
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Sublinear rates

Error at iteration Et , number of iterations to reach ε-error Tε

Et = O
(

1
tb

)
⇔ Tε = O

(
1
ε1/b

)
b > 0

b = 1/2

Et = O
(

1√
t

)
⇔ Tε = O

(
1
ε2

)
b = 1

Et = O
(

1
t

)
⇔ Tε = O

(
1
ε

)
ex: gradient descent for smooth but not strongly-convex functions

b = 2

Et = O
(

1
t2

)
⇔ Tε = O

(
1√
ε

)
ex: Nesterov’s method for smooth but not strongly-convex functions
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Linear rates

The iteration number t now appears in the exponent

Et = O(ρt ) ρ ∈ (0,1)

Example:

Et = O
(
e−t)⇔ Tε = O

(
log

1
ε

)
“Linear rate” is kind of a misnomer: Et is decreasing exponentially
fast! On the other hand, log Et is decreasing linearly.

Ex: gradient descent on smooth and strongly convex functions
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Superlinear rates

We can further classify the order q of convergence rates

lim
t→∞

Et

(Et−1)q = M

Superlinear (q = 1, M = 0)

Et = O
(

e−tk
)
⇔ Tε = O

(
log

1
ε

)1/k

Quadratic (q = 2)

Et = O
(

e−2t
)
⇔ Tε = O

(
log log

1
ε

)
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Coordinate descent

Minimize only one variable per iteration, keeping all others fixed

Well-suited if the one-variable sub-problem is easy to solve

Cheap iteration cost

Easy to implement

No need for step size tuning

State-of-the-art on the lasso, SVM dual, (non-negative) matrix
factorization

Block coordinate descent: minimize only a block of variables
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Coordinate-wise minimizer

A point is called coordinate-wise minimizer of f if f is minimized
along all coordinates separately

f (x + δej) ≥ f (x) ∀δ ∈ R, j ∈ {1, . . . ,d}

Does the coordinate-wise minimizer coincide with the global
minimizer?

f convex and differentiable: yes

∇f (x) = 0⇔ ∇j f (x) = 0 j ∈ {1, . . . ,d}

f convex but non-differentiable: not always. Coordinate descent
can get stuck

f (x) = g(x) +
∑d

j=1 hj(xj) where g is differentiable but hj is not: yes

0 ∈ ∂f (x)⇔ −∇jg(x) ∈ ∂hj(xj) j ∈ {1, . . . ,d}
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Coordinate descent

On each iteration t , pick a coordinate jt ∈ {1, . . . ,d} and minimize
(approximately) this coordinate while keeping others fixed

min
xjt

f (x t
1, x

t
2, . . . , xjt , . . . , x

t
d−1, x

t
d )

Coordinate selection strategies: random, cyclic, shuffled cyclic.

Coordinate descent with exact updates: requires an “oracle” to
solve the sub-problem

Coordinate gradient descent: only requires first-order information
(and sometimes a prox operator)
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Coordinate descent with exact updates

Suppose f is a quadratic function. Then

f (x + δej) = f (x) +∇j f (x)δ +
δ2

2
∇2

jj f (x)

Minimizing w.r.t. δ, we get

δ? = −
∇j f (x)

∇2
jj f (x)

⇔ xj ← xj −
∇j f (x)

∇2
jj f (x)

Example: f (x) = 1
2‖Ax − b‖22 + λ

2‖x‖
2
2

∇f (x) = A>(Ax − b) + λx ⇒ ∇j f (x) = A>:,j(Ax − b) + λxj

∇2f (x) = A>A + λI ⇒ ∇2
jj f (x) = ‖A:,j‖22 + λ
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Coordinate descent with exact updates

Computing ∇f (x) for gradient descent costs O(nd) time

Let us maintain the residual vector r = Ax − b ∈ Rn

When xj is updated, synchronizing r takes O(n) time

When r in synchronized, we can compute ∇j f (x) in O(n) time

The second derivatives ∇2
jj f (x) can be pre-computed ahead of time,

since it does not depend on x

Doing a pass on all d coordinates therefore takes O(nd) time, just
like one iteration of gradient descent

Mathieu Blondel Beyond gradient descent 14 / 47



Coordinate descent with exact updates

If f (x) = g(x) +
∑d

j=1 hj(xj) and g is quadratic, then

f (x + δej) = g(x) +∇jg(x)δ +
δ2

2
∇2

jj g(x) + hj(xj + δ)

The closed form solution is

δ? = prox λ

∇2
jj f (x)

hj

(
xj −

∇jg(x)

∇2
jj g(x)

)
− xj

where we used the proximity operator

proxτhj
(u) = argmin

v

1
2

(u − v)2 + τhj(v)

If hj = | · |, then prox is the soft-thresholding operator.

State-of-the-art for solving the lasso!
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Coordinate gradient descent

If f is not quadratic, there typically does not exist a closed form

If ∇j f (x) is Lj -Lipschitz-continuous, recall that ∇2
jj f (x) ≤ Lj

Key idea: replace ∇2
jj f (x) with Lj , i.e.,

xj ← xj −
∇j f (x)

∇2
jj f (x)

becomes

xj ← xj −
∇j f (x)

Lj

Each Lj is coordinate-specific (easier to derive and tighter than a
global constant L)

Convergence: O(1/ε) under Lipschitz gradient and O(log(1/ε))
under strong convexity (random or cyclic selection)
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Coordinate gradient descent with prox

Similarly, we can replace

xj ← prox λ

∇2
jj g(x)

hj

(
xj −

∇jg(x)

∇2
jj g(x)

)

with

xj ← prox λ
Lj

hj

(
xj −

∇jg(x)

Lj

)
where ∇2

jj g(x) ≤ Lj for all x

Can be used for instance for L1-regularized logistic regression

If hj(xj) = ICj (xj), where Cj is a convex set, then the prox becomes
the projection onto Cj .
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Implementation techniques

Synchronize “statistics” (e.g. residuals) upon each update

Column-major format: Fortran-style array or sparse CSC matrix

Regularization path and warm-start

λ1 > λ2 > · · · > λm

Since CD converges faster with big λ, start from λ1, use solution to
warm-start (initialize) λ2, etc.

Active set, safe screening: use optimality conditions to safely
discard coordinates that are guaranteed to be 0
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Newton’s method for root finding

Given a function g, find x such that g(x) = 0

Such x is called a root of g

Newton’s method in one dimension:

x t+1 = x t − g(x t )

g′(x t )

Newton’s method in d dimensions:

x t+1 = x t − Jg(x t )−1g(x t )

where Jg(x t ) ∈ Rd×d is the Jacobian matrix of g : Rd → Rd

The method may fail to converge to a root
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Newton’s method for optimization

If we want to minimize f , we can set g = f ′ or g = ∇f

Newton’s method in one dimension:

x t+1 = x t − f ′(x t )

f ′′(x t )

Newton’s method in d dimensions:

x t+1 = x t −∇2f (x t )−1∇f (x t )︸ ︷︷ ︸
d t

In practice, once solves the linear system of equations

∇2f (x t )d t = ∇f (x t )

If f is non-convex, ∇2f (x t ) is indefinite (i.e., not psd)
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Line search

If f is a quadratic, Newton’s method converges in one iteration

Otherwise, Newton’s method may not converge, even if f is convex

Solution: use a step size

x t+1 = x t − ηtd t

Backtracking line search: decrease ηt geometrically until ηtd t

satisfies some conditions

Examples: Armijo rule, strong Wolfe conditions

Superlinear local convergence
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Trust region methods

Newton’s method

x t+1 = x t −∇2f (x t )−1∇f (x t )︸ ︷︷ ︸
d t

is equivalent to solving a quadratic approximation of f around x t

−d t = argmin
d

f (x t ) +∇f (x t )>d +
1
2

d>∇2f (x t )d

Trust region method: add a ball constraint

−d t = argmin
d

f (x t )+∇f (x t )>d +
1
2

d>∇2f (x t )d s.t. ‖d‖2 ≤ δt

If x t − d t increases f , reject the solution and decrease δt

Similar convergence guarantees as line search methods
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Hessian-free method

If d (number of dimensions) is large, computing the Hessian matrix
is expensive

The conjugate gradient (CG) method can be used to solve Ax = b

It only requires to know how to multiply with A, not A directly

Since A = ∇2f (x t ), we need to multiply with the Hessian

This can be done in a number of ways: manual derivation, finite
difference, autodiff (cf. autodiff lecture)

The resulting algorithm (with line search) is called Newton-CG
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Sub-sampled Hessians

In machine learning, f is often an average (finite expectation)

f (x) =
1
n

n∑
i=1

fi(x)

On iteration t we can sub-sample a set St ⊆ {1, . . . ,n} to compute
unbiased estimates of the gradient and Hessian

∇f (x) ≈ 1
|St |

∑
i∈St

∇fi(x t )

∇2f (x) ≈ 1
|St |

∑
i∈St

∇2fi(x t )

Can be combined with Hessian-free method
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Quasi-Newton methods

BFGS: replaces

x t+1 = x t −∇2f (x t )−1∇f (x t )

with
x t+1 = x t − H t∇f (x t )

where H t+1 ≈ ∇f (x t+1)−1 is built incrementally from H t ,
d t = x t+1 − x t and v t = ∇f (x t+1)−∇f (x t ) using the so-called
secant equation

L-BFGS: keep a history of only m pairs (d t , v t ) and compute
H t∇f (x t ) on the fly without materializing H t in memory

Local superlinear convergence rate

One of the go-to algorithms in machine learning!
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Projected gradient descent

Consider the constrained optimization problem

min
x∈C

f (x)

where f is L-smooth convex and C is a closed convex set

Projected gradient descent

x t+1 = PC

(
x t − 1

L
∇f (x t )

)
where

PC(x) = argmin
y∈C

‖x − y‖22

is the projection of x onto C
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Projected gradient descent

Recall that gradient descent’s update can be seen as solving a
(crude) local quadratic approximation of f around x t

x t+1 = x t−1
L
∇f (x t ) = argmin

x∈Rd
f (x t )+∇f (x t )>(x−x t )+

L
2

(x − x t )>I(x − x t )︸ ︷︷ ︸
||x−x t ||22

Similarly

x t+1 = PC(x t − 1
L
∇f (x t)) = PC argmin

x∈Rd
f (x t) +∇f (x t)>(x − x t) +

L
2
||x − x t ||22

= argmin
x∈C

f (x t) +∇f (x t)>(x − x t) +
L
2
||x − x t ||22
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Frank-Wolfe

A method for constrained optimization

Based on a linear approximation instead of a quadratic one

Projection free: a linear minimization oracle (LMO) is needed
instead

LMOs are typically cheaper to compute than projections

Also known as conditional gradient method (not to be confused with
conjugate gradient method)
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Frank-Wolfe

Initialize x0 ∈ C

For t ∈ {0,1,2, . . . }

s = argmin
s∈C

f (x t ) +∇f (x t )>(s − x t ) = argmin
s∈C

∇f (x t )>s

x t+1 = (1− γt )x t + γts γt =
2

2 + t

argmins∈C g>s is called linear minimization oracle (LMO)

C needs to be compact (closed and bounded), otherwise the LMO
problem is not feasible (solution goes to infinity)

How to compute the LMO?
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Convex hulls

Probability simplex

4m = {p ∈ Rm :
m∑

i=1

pi = 1,pi ≥ 0 i ∈ {1, . . . ,m}}

v is a convex combination of {v1, . . . , vm} if

v =
m∑

i=1

pivi for some p ∈ 4m

The convex hull of S is the set of all convex combinations of S

conv(S) =

{
m∑

i=1

pivi : m ∈ N; p ∈ 4m; v1, . . . , vm ∈ S

}
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Convex polytopes

A convex polytope is the convex hull of its vertices V = {v1, . . . , vm}

C = conv(V )

Example 1: Probability simplex

4m = conv({e1, . . . ,em})

Example 2: L1-ball

♦m = {x : ‖x‖1 ≤ 1} = conv({±e1, . . . ,±em})

Example 3: L∞-ball

�m = {x : ‖x‖∞ ≤ 1} = conv({−1,1}m)
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Linear minimization oracles

If C = conv(V ) where V = {v1, . . . , vm} then

argmin
s∈C

g>s ⊆ V

Example 1: Probability simplex

ei ∈ argmin
s∈4m

g>s i ∈ argmin
j

gj

Example 2: L1-ball

sign(−gi)ei ∈ argmin
s∈♦m

g>s i ∈ argmax
j
|gj |

Example 3: L∞-ball

sign(−g) ∈ argmin
s∈�m

g>s
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Example: sparse regression

Consider the objective

min
‖w‖1≤τ

f (w) =
1
2
‖Xw − y‖22 ∇f (w) = X>(Xw − y)

Initialize w0 = 0

For t ∈ {0,1,2, . . . }

g = ∇f (w t )

i ∈ argmax
j
|gj |

s = τ · sign(gi)ei

w t+1 = (1− γt )w t + γts γt =
2

2 + t
Pick a coordinate greedily and update it!

Sparse solution: w t contains at most t non-zero elements
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Norm constraints

Consider the case of norm constraints C = {x ∈ Rd : ‖x‖ ≤ τ}

Note that
s ∈ argmin

‖x‖≤τ
g>x = τ · argmax

‖x‖≤1
−g>x

Recall the definition of dual norm

‖y‖∗ = max
‖x‖≤1

x>y

Thus, up to the factor τ , s is the argument achieving the maximum
in the dual norm

We saw (last lecture) that this coincides with the subdifferential

Therefore, s ∈ τ · ∂‖ − g‖∗

Example 3 (last slide): sign(−g) ∈ ∂‖ − g‖1
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Frank-Wolfe variants

Vanilla FW has a slow sublinear rate

f (x t )− f (x?) ≤ O
(

1
t

)
Variants of FW that enjoy a linear rate of convergence exist under
strong convexity assumptions on f

f (x t )− f (x?) ≤ O
(
ρt) ρ ∈ (0,1)

Full-corrective FW

Away-steps FW

Pairwise FW
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Bregman divergences
The Bregman divergence generated by ϕ between u and v is

Dϕ(u, v) = ϕ(u)− ϕ(v)− 〈∇ϕ(v),u − v〉
It is the difference between ϕ(u) and its linearization around v .

u

Dϕ(u, v)

v

ϕ(u)

ϕ(v) + 〈∇ϕ(v), u− v〉

Examples: ϕ(x) = 1
2‖x‖

2
2 (squared Euclidean), ϕ(x) = x> log(x)

(Kullback-Leibler)
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Bregman projections

Euclidean projection

PC(x) = argmin
y∈C

‖y − x‖22

Bregman projection onto C ⊆ dom(ϕ)

Pϕ
C (x) = argmin

y∈C
Dϕ(y , x)

Recovers Euclidean projections as a special case

Example: ϕ(x) = x> log(x)

Pϕ
C (x) = argmin

y∈C
KL(y , x) x ∈ Rd

+, C ⊆ Rd
+
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Mirror descent
Projected gradient descent

x t+1 = PC(x t − ηt∇f (x t)) = PC argmin
x∈Rd

f (x t) +∇f (x t)>(x − x t) +
1

2ηt ||x − x t ||22

= argmin
x∈C

f (x t) +∇f (x t)>(x − x t) +
1

2ηt ||x − x t ||22

Mirror descent

x t+1 = PϕC argmin
x∈Rd

f (x t) +∇f (x t)>(x − x t) +
1
ηt Dϕ(x , x t)

= argmin
x∈C

f (x t) +∇f (x t)>(x − x t) +
1
ηt Dϕ(x , x t)

6= PϕC (x
t − ηt∇f (x t)) (in general)

Convergence rate is O
(

Lf ,∗√
t

)
, where ‖∇f (x)‖∗ ≤ Lf ,∗ for all x when

using ηt = O
(

1
Lf ,∗
√

t

)
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Example: optimization over the simplex

If ϕ(x) = x> log(x) and C = 4d , then we have a closed form

x t+1 =
x t exp(−ηt∇f (x t ))∑d

j=1 x t
j exp(−ηt∇j f (x t ))

(the operations in the numerator are element-wise)

Often called exponentiated gradient descent or entropic descent

The KL case, for which ‖ · ‖ = ‖ · ‖1 and ‖ · ‖∗ = ‖ · ‖∞, enjoys
better convergence rate than the Euclidean case on the simplex

Indeed, using ‖g‖∞ ≤ ‖g‖2 ≤
√

d‖g‖∞, we get

1√
d
≤

Lf ,∞
Lf ,2

≤ 1
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Alternative view

On iteration t

x̂ t = ∇ϕ(x t ) map primal point to dual

ŷ t+1 = x̂ t − ηt∇f (x t ) take gradient step in the dual

y t+1 = ∇ϕ∗(ŷ t+1) map new dual point back to primal

x t+1 = Pϕ
C (y t+1) project onto feasible set

∇ϕ and ∇ϕ∗ are called mirror maps

Under technical assumptions on ϕ called “Legendre-type” (ϕ strictly
convex, ∇ϕ =∞ on the boundary of dom(ϕ)), we have

∇ϕ∗ = (∇ϕ)−1
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Summary

Convergence rates: important to familarize yourself with their
classification

Coordinate descent: ideal when regularizers or constraints are
decomposable

Newton’s method: the Newton-CG algorithm (Hessian-free) is
popularly used

Frank-Wolfe: projection-free constrained optimization

Mirror descent: generalization of projected gradient descent to
non-Euclidean geometries
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Lab work

Recall that the dual of multiclass SVMs consists in maximizing

D(β) = −
n∑

i=1

[Ω(βi)− Ω(yi)]− 1
2λ
‖X>(Y − β)‖22 s.t. βi ∈ 4k

where X ∈ Rn×d (features), Y ∈ Rn×k (one-hot labels),
Ω(βi) = −〈βi ,1− yi〉, λ > 0 (regularization parameter)

The primal-dual link is W ? = 1
λX>(Y − β?) ∈ Rd×k

The gradient ∇D(β) ∈ Rn×k has rows as follows:

∇iD(β) = −∇Ω(βi) + x>i (
1
λ

X>(Y − β)︸ ︷︷ ︸
W

) ∈ Rk

where ∇Ω(βi) = yi − 1
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Lab work

We want to minimize f (β) = −D(β), where ∇f (β) = −∇D(β)

Implement Frank-Wolfe for this problem.
Initialize β0

i ∈ 4k , e.g., β0
i = (1/k , . . . ,1/k), for i ∈ {1, . . . ,n}

For t ∈ {0,1,2, . . . }

G = ∇f (βt ) ∈ Rn×k

si = argmin
si∈4k

g>i si i ∈ {1, . . . ,n}

βt+1 = (1− γt )βt + γtS γt =
2

2 + t

Implement mirror descent for this problem using the KL geometry.

βt+1
i =

βt
i exp(−ηt∇i f (βt ))∑k

j=1 β
t
i,j exp(−ηt∇i,j f (βt ))

i ∈ {1, . . . ,n}

using ηt = η/
√

t for some η ∈ (0,1]
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