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Closed functions

= The domain of a function is denoted dom(f) = {x € R9: f(x) < oo}
m A function is closed if for all € R the sub-level set
{x e dom(f): f(x) < a}

is closed (reminder: a set is closed if it contains its boundary)
m If fis continuous and dom(f) is closed then f is closed
m Example 1: f(x) = xlog x is not closed over dom(f) =R+
m Example 2: f(x) = xlog x is closed over dom(f) = R>g, f(0) =0
m Example 3: the indicator function /¢ is closed if C is closed

0 ifxec
'C(X)_{ % ifx¢c.
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Convex conjugate

m Fix a slope y. What is the intercept b of the tighest linear lower
bound of f? In other words, for all x € dom(f), we want

X, y) —b<f(x)e (x,y)—f(x)<b
< b= sup (x,y)—f(x)

xedom(f)

m The value of the intercept is denoted *(y), the conjugate of f(x).

f(=@)

—f (g
slope y
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Convex conjugate

m Equivalent definition

—f(y)= inf f(x)—(x,y)

xedom(f)
m f* can take values on the extended real line RU {oo}
m f*is closed and convex (even when f is not)

m Fenchel-Young inequality: for all x, y

fx)+ () = (x,y)
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Convex conjugate examples

m Example 1: f(x) = lc(x), the indicator function of C

F(y)= sup (x,y)—f(x) =sup(x,y)
xedom(f) xeC

f* is called the support function of C

m Example 2: f(x) = (x,log x), then

m Example 3: f(x) = (x,log x) + I,4(X)

Fiy) —  exP(Y)
V=57 oot
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Convex conjugate calculus

m Separable sum
d d
)= fitx) )= )
i=1 i=1

m Scalar multiplication (¢ > 0)
fix)=c-9(x)  F(y)=c-g'(y/c)
m Addition to affine function / translation of argument
fx)=9(x)+(ax)+b  Fy)=9(y-a-b
m Composition with invertible linear mapping
fx)=g(Ax)  F(y)=g(A"y)
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Biconjugates

m The bi-conjugate

f(x)=sup (x,y)—f(y)
yedom(f+)

m ** is closed and convex
m If f is closed and convex then
f*(x) = f(x)

m If fis not convex, f** is the tightest convex lower bound of f
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Subgradients
m Recall that a differentiable convex function always lies above its
tangents, i.e., for all x, y € dom(f)
f(y) = f(x) + (VI(x),y = x)
m g is the subgradient of a convex function f if for all x, y € dom(f)

f(y) = f(x) + {9,y — x)
F)

Fx) +gl(y—x1)

) + gl (y = xp)

f(x2) + g5 (y — x2)

| I
X1 X2
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Subdifferential

m The subdifferential is the set of all subgradients

0f(x) = {g: f(y) > f(x) + (g.y — x) ¥y € dom(f)}
m Example: f(x) = |x]
J(x) af(x)

9f(0) = [-1,1]  9f(x) = {VF(x)}if x #0
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Conjugates and subdifferentials

m Alternative definition of subdifferential
of*(y) = {x € dom(f): f(x) + f(y) = (x,y)}
m From Danskin’s theorem

of*(y) = argmax(x, y) — f(x)

xedom(f)

m If f is strictly convex

VF*(y) = argmax(x, y) — f(x)

xedom(f)

m And similarly for 0f(x), V£(x)
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F2 Smoothing techniques
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Bregman divergences

m Let f be convex and differentiable.
m The Bregman divergence generated by f between u and v is
D(u, v) = f(u) — f(v) = (VA(v),u—v)

m It is the difference between f(u) and its linearization around v.

Fu)
Dy (u,v)

F(0) + (V) u—v)

—r
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Bregman divergences

m Recall that a differentiable convex function always lies above its
tangents, i.e., for all u, v

f(u) > f(v) +(VF(v),u—v)
m The Bregman divergence is thus non-negative for all u, v
Df(U, V) > 0

m Put differently, a differentiable function f is convex if and only if it
generates a non-negative Bregman divergence.

m Not necessarily symmetric
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Bregman divergences

m Example 1: if f(x) = J||x||3, then Dy is the squared Euclidean
distance

1
D(u,v) = 5llu - v|}3

m Example 2: if f(x) = (x,log x), then Dy is the (generalized)
Kullback-Leibler divergence

Zpllog Zp,+2q,
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Strong convexity
m fis said to be u-strongly convex w.r.t. a norm || - || over C if

gHu — V|2 < Dy(u,v) forall uvecC

Big 1
Small p
m Example 1: f(x) = }||x||2 is 1-strongly convex w.r.t. | - ||» over RY.
m Example 2: f(x) = (x,log x) is 1-strongly convex w.r.t. | - ||y over

the probability simplex A9 = {p € RS : ||p||y = 1}.
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Strong convexity
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Smoothness

m fis said to be L-smooth w.r.t. a norm || - || over C if

L
Dy(u,v) < Slu- v|? forall u,vec

Small L
Big L
m Example 1: f(x) = ||x||2 is 1-smooth w.r.t. | - || over RC.
m Example 2: f(x) = log Y, €* is 1-smooth w.r.t. | - || over RY
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Hessian bounds

= When f is twice differentiable, this also leads to bounds on V2f
m When f is strongly convex, we have

- ldg < V2f
m When f is smooth, we have

V2f < L-1dg

m Functions can be both strongly-convex and smooth, e.g., the sum
of a smooth function and a strongly-convex function.
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Lipschitz functions

m Given a norm ||x|| on C, its dual (also on C) is

« = max (X,
Iyl = max (x.)
Examples: || - ||2 is dual with itself, || - ||1 is dual with || - ||

= A function g: R — RP is said to be L-Lipschitz continuous w.r..
| - || over Cifforall x,y € C CRY

lg(x) = gl < Liix =yl

m Choose g = Vf. Then f is said to have Lipschitz-continuous
gradients.

m Fact. A function is L-smooth if and only if it has L-Lipschitz
continuous gradients.
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Strong convexity and smoothness duality

= Theorem.
fis u-strongly convex w.rt. || - || & f*is Zj—smooth w.rt || -]«
m Example 1:
f(x) = 4|/x||? is p-strongly convex w.r.t. || - ||,
() = LIyl2is 1- ,
f(y) = 2z lyll5 is ;;-smooth w.r.t. || - |[..
m Example 2:
f(x) = (x,log x) is 1-strongly convex w.r.t. || - ||1 over AY,
*(y) = log Y, € is 1-smooth w.r.t. || - || over RY.
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Smoothing: Moreau-Yosida regularization

m Suppose we have a non-smooth function g(x), e.g., g(x) = |x|
m We can create a smooth version of g by
0,(x) = ming(u) + 5= x - ul
= This is also called the inf-convolution of g with | - |3
m The gradient of g, is equal to the proximity operator of ;.9
Vou(x) =u*

. 1 2
=argmng(u)+ —|[X—Uu

. 1
= argmin ug(u) + X - ull2

= Prox,,q(x)
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Smoothing: Moreau-Yosida regularization

m Example: g(x) = |x]
m The proximity operator is the soft-thresholding operator

0 if x| <

. : 1 2 _
u™ = argmin ulu| + 3lx - ullz = { x — psign(x) if [x| > p.

m Using g,.(x) = [u*] + 5 [Ix — u*|3, we get

g0 =1 5 <
PR I =4 it x| >

m This is known as the Huber loss.
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Smoothing: Moreau-Yosida regularization
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Smoothing: dual approach

m Suppose we want to smooth a convex function g(x)
m Step 1: derive the conjugate g*(y)

m Step 2: add regularization

>k * lu’
9.1 =g )+ 5yl
m Step 3: derive the bi-conjugate

9. (X) = gu(x) = yegg%g*)m ¥) = ag.(y)

m Equivalent (dual) to Moreau-Yosida regularization!

= By duality, g,.(x) is ;-smooth since 4|| - |5 is p-strongly convex.
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Smoothing: dual approach

m Example 1: g(x) = |x|
m Step 1: g*(y) = f-1,1(¥)
m Step 2: add regularization
G = o) + 552

m Step 3: derive the bi-conjugate

*k _ — . o H 2
9,7 (x) = gu(x) jmax Xy =5y
m Solution:
gu.(X)=x-y*— /i(y*)z where y* = clipping 1x
©w 2 [=1,1] 1
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Smoothing: dual approach

m Example 2: g(x) = max(0, x), i.e., the relu function
m Step 1: g*(y) = fo.1(¥)
m Step 2: add regularization

g0 = o)+ 5¥°

m Step 3: derive the bi-conjugate
*x _ — v /i 2
9" (X) = gulx) = max x-y -5y

m Solution:
a(x)=x-y" — H(y*)z where y* = clipping lx
s 2 [0,1] 1
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Smoothing: dual approach
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Smoothing: dual approach

m Regularization is not limited to 4||y/||
m Any strongly-convex regularization can be used
m Example: softmax
900 =
9 (y) = lna(y)
9u(y) = Ina(y) + p(y,logy)

d
gu(x) = nlog )~ exp(x;/p)

=1
exp(x/ 1)

VGu(x) = > exp(x;/1)
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El Fenchel duality
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Fenchel dual

m F(0) convex, G(W) strictly convex
m We are going to derive the Fenchel dual of

in F(XW)+ G(W
Jmin F(XW) + G(W)

where X € R™9 and W € RI*k
m Let us rewrite the problem using constraints

min  F(0) + G(W) s.t. 6 = XW
WeRI*xk
OeRM<k

F and G now involve different variables (tied by equality constraints)
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Fenchel dual

= We now use Lagrange duality

min  max F(8)+ G(W) + (a,§ — XW)
WeRdxkk aER"Xk
OeR™

m Since the problem only has linear constraints and is feasible, strong
duality holds (we can swap the min and max)

max min F(0) + G(W) + (o, 0 — XW)
aeRnxk WeRdxkk
OeR*

m We are now going to introduce the convex conjugates of F and G.
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Fenchel dual

m For the terms involving 0, we have

min F(0) + (o, 0) = —F*(—a)
HcRNxk

m For the terms involving W, we have

. _ . _ T
Jmin G(W) = (0, XW) = min G(W)— (W,X"a)

=-G'(XTa)
m To summarize, the dual consists in solving

max —F*(—a) — G*(X"a)

a€RMxk

m The primal-dual link is
W* = VG (X' oY)
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Fenchel dual for loss sums

m Typically, in machine learning, F is a sum of loss terms and G is a
regularization term:

n
F(6) = ZL(G,-,y,-) where 60;=W'x;
i=1
m Since the sum is separable, we get
n
F*(—Oé) = Z L*(—Oéi,Yi)
i=1

where L* is the convex conjugate in the first argument of L

m What have we gained? If G* is simple enough, we can solve the
objective by dual block coordinate ascent.
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Examples of regularizer

m Squared L, norm
_ Az A
G(W) = SIW|2 = S(W.W)
sk _ 1_ 2
G'(V) =55 IViE
" B 1
VG (V) = XV
m Elastic-net
A
G(W) =3l WIIZ + Aol W/
G"(V)=(VG'(V), V) - G(VG*(V))
o1
VG (V) = argmin 5 | W = V/A[2 + pl| Wil

The last operation is the soft-thresholding operator (element-wise).
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Fenchel-Young losses

m The Fenchel-Young loss generated by

La(0i, yi) = Q(6) + 2yi) — (05, vi)
m Non-negative (Fenchel-Young inequality)
m Convex in 6 even when € is not

m If Q is strictly convex, the loss is zero if and only if

yi = VQ*(6;) = argmax (y’,6;) — Q')
y’edom(Q)

m Conjugate function (in the first argument)

Lo(—ai, yi) = Qi — ai) — Q(¥)
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Fenchel-Young losses

m Squared loss

1 1
Q(B) = §Hﬂi||§ La(0,yi) = 5llyi = 03
yi € R¥
m Multiclass perceptron loss

QBi) = Iak(Bi))  La(bi,yi) = jemaxk} 0ij — (01, ¥i)

.....

yieler, ..., e}

m Multiclass hinge loss
QBi) = Iak(B))—(Bi,vi)  La(bi,yi) = jemaxk} 0ij+Vvij— (0. ¥i)

vi=1-y; yie{er, ... e}
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Dual in the case of Fenchel-Young losses
m Recall that the dual is

n
max — > L[*(—a;, ) — G"(X ')
i=1

aER”Xk

with primal-dual link W* = VG*(X T o*)

m Using the change of variable 5; = y; — a; and L = Lo, we obtain

max —Z[ﬂ Bi) = Q)] = G(XT(Y = §)) st. 5 € dom(Q)

BER"Xk

with primal-dual link W* = VG*(XT(Y — *)). Note that
Y € {0,1}™ contains the labels in one-hot representation.
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Duality gap

m Let P(W) and D(p3) be the primal and dual objectives, respectively.
m For all W and g we have
D(B) < P(W)
m At the optima, we have
D(5*) = P(W")

m P(W)— D(5) > 0 is called the duality gap and can be used as a
certificate of optimality.
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1 Block coordinate ascent
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Block coordinate ascent

= Key idea: on each iteration, pick a block of variables 5; € RX and
update only that block.
m If the block has a size of 1, this is called coordinate ascent.

m Exact update:

Bi+ argmin Q(8;) —Q(y;)+ G(X'(Y=8)) ie{l,....,n}
Biedom(£)

m Possible schemes for picking i: random, cyclic, shuffled cyclic
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Block coordinate ascent

m The sub-problem can be too complicated in some cases.

m Approximate update (using a quadratic approximation around the
current iterate )

B argmin Q(8) - (8 u) + 7 16il3
Biedom(Q)

= prox%Q(u,-/o,-)

where o; = ”X’”2 and u; = VG* (X' (Y — B)) x; + 0ip!.
W

m Exact if both Q and G* are quadratic

m Enjoys a linear rate of convergence w.r.t. the primal objective if
and G are strongly-convex.
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Proximal operators

= Squared loss: Q(3)) = 3118ill3

_ . 2 T 2_ N
prox (1) = argrin 8 —nlz+ 51802 = ——

m Perceptron loss: Q(5;) = Ixx(5))

prox,q(n) = argmin |p — 7|3

peik
m Multiclass hinge loss: Q(5;) = I.x(5i) — (Bi, Vi)
prox,q(n) = argmin o — (n + 7v)|3
pENK
where vi =1 —y;and y; € {ey,..., e} is the correct label.
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3 cConclusion
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Summary

m Conjugate functions are a powerful abstraction.

m Smoothing techniques are enabled by the duality between
smoothness and strong convexity.

m The dual can often be easier to solve than the primal.

m If the dual is quadratic and the constraints are decomposable, dual
block coordinate ascent is very well suited.
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Lab work

Implement BDCA for the squared loss and the multiclass hinge loss.
m Primal objective

n
P(W)=> Lo(bi,yi)+ G(W) 6= WT'x eR" y e R
i=1
m Dual objective

Z[Q Bi) — Q)] = G (XT(Y ~ §)) s.t. 5; € dom(Q)
with primal-dual link W* = VG*(XT(Y — 3*)). Note that
Y € {0, 11X contains the labels in one-hot representation.
m Duality gap P(W) — D(B)

m For G, use the squared L, norm
Mathieu Blondel
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Lab work

m Approximate block update
Bi = prox 1 o(Uj/oj)
42 and u; = VG (XT(Y - 8)) X + 0.
w

where o; =

m Use cyclic block selection
m See “Proximal operators” slide for prox expressions
m See “Fenchel-Young losses” slide for Lg and Q expressions

m See “Examples of regularizer” slide for G* and VG* expressions
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